• 제목, 요약, 키워드: 손 추적

검색결과 247건 처리시간 0.036초

자연스러운 손 추출 및 추적 (Natural Hand Detection and Tracking)

  • 김혜진;곽근창;김도형;배경숙;윤호섭;지수영
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.148-153
    • /
    • 2006
  • 인간-컴퓨터 상호작용(HCI) 기술은 과거 컴퓨터란 어렵고 소수의 숙련자만이 다루는 것이라는 인식을 바꾸어 놓았다. HCI 는 컴퓨터 사용자인 인간에게 거부감 없이 수용되기 위해 인간과 컴퓨터가 조화를 이루는데 많은 성과를 거두어왔다. 컴퓨터 비전에 기반을 두고 인간과 컴퓨터의 상호작용을 위하여 사용자 의도 및 행위 인식 연구들이 많이 행해져 왔다. 특히 손을 이용한 제스처는 인간과 인간, 인간과 컴퓨터 그리고 최근에 각광받고 있는 인간과 로봇의 상호작용에 중요한 역할을 해오고 있다. 본 논문에서 제안하는 손 추출 및 추적 알고리즘은 비전에 기반한 호출자 인식과 손 추적 알고리즘을 병행한 자연스러운 손 추출 및 추적 알고리즘이다. 인간과 인간 사이의 상호간의 주의집중 방식인 호출 제스처를 인식하여 기반하여 사용자가 인간과 의사소통 하는 것과 마찬가지로 컴퓨터/로봇의 주의집중을 끌도록 하였다. 또한 호출 제스처에 의해서 추출된 손동작을 추적하는 알고리즘을 개발하였다. 호출 제스처는 카메라 앞에 존재할 때 컴퓨터/로봇의 사용자가 자신에게 주의를 끌 수 있는 자연스러운 행동이다. 호출 제스처 인식을 통해 복수의 사람이 존재하는 상황 하에서 또한 원거리에서도 사용자는 자신의 의사를 전달하고자 함을 컴퓨터/로봇에게 알릴 수 있다. 호출 제스처를 이용한 손 추출 방식은 자연스러운 손 추출을 할 수 있도록 한다. 현재까지 알려진 손 추출 방식은 피부색을 이용하고 일정 범위 안에 손이 존재한다는 가정하에 이루어져왔다. 이는 사용자가 제스처를 하기 위해서는 특정 자세로 고정되어 있어야 함을 의미한다. 그러나 호출 제스처를 통해 손을 추출하게 될 경우 서거나 앉거나 심지어 누워있는 상태 등 자연스러운 자세에서 손을 추출할 수 있게 되어 사용자의 불편함을 해소 할 수 있다. 손 추적 알고리즘은 자연스러운 상황에서 획득된 손의 위치 정보를 추적하도록 고안되었다. 제안한 알고리즘은 색깔정보와 모션 정보를 융합하여 손의 위치를 검출한다. 손의 피부색 정보는 신경망으로 다양한 피부색 그룹과 피부색이 아닌 그룹을 학습시켜 얻었다. 손의 모션 정보는 연속 영상에서 프레임간에 일정 수준 이상의 차이를 보이는 영역을 추출하였다. 피부색정보와 모션정보로 융합된 영상에서 블랍 분석을 하고 이를 민쉬프트로 추적하여 손을 추적하였다. 제안된 손 추출 및 추적 방법은 컴퓨터/로봇의 사용자가 인간과 마주하듯 컴퓨터/로봇의 서비스를 받을 수 있도록 하는데 주목적을 두고 있다.

  • PDF

다중 특징을 이용한 견고한 손추척 및 인식 시스템 (Robust Hand Tracking and Recognition System Using Multiple Feature Data Fusion)

  • 천성용;박신원;장호진;이찬수;손명규;이상헌
    • 한국정보과학회:학술대회논문집
    • /
    • /
    • pp.490-495
    • /
    • 2010
  • 본 연구에서는 효과적인 손 제스처 인식을 위하여 다중 특징을 이용한 견고한 손 추적 방법을 제시한다. 기존의 많은 손추적 장치들이 칼라 정보나 모션 정보와 같은 단일한 정보를 바탕으로 손을 검출하고, 이를 바탕으로 손의 추적하는 방법들을 제시하고 있다. 이러한 방법들의 경우에는 손 추적 중에 환경이나 상황이 변하게 되면, 손추적의 정확도가 현저하게 떨어지게 된다. 본 연구에서는 이러한 문제점들을 보완하기 위하여, Adaboost를 이용한 손 검출, 역투영을 기반으로 손 색상을 이용한 추적, KLT를 바탕으로 한 모션 추적을 이용한 검출을 동시에 수행하며, 각 센서의 추적 결과에 대한 칼만 필터 적용뿐 아니라, 각 센서 정보를 통합하여 견고한 결과를 얻기 위한 방법을 제시한다. 이를 바탕으로 손제스처 인식 시스템을 개발하였으며, 개발된 제스처 인식을 바탕으로 비디오 플레이를 제어하는 시스템을 구현하였다.

  • PDF

피부색 검출 및 특징점 추적을 통한 원거리 손 모션 제스처 인식 (Hand Motion Gesture Recognition at A Distance with Skin-color Detection and Feature Points Tracking)

  • 윤종현;김성영
    • 한국정보처리학회:학술대회논문집
    • /
    • /
    • pp.594-596
    • /
    • 2012
  • 본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.

  • PDF

얼굴 영역 추적을 통한 향상된 손 영역 추척에 관한 연구 (Improved Hand Region Tracking Using Face Region Tracking)

  • 손지수;김동규;이승호;노용만
    • 한국정보처리학회:학술대회논문집
    • /
    • /
    • pp.884-887
    • /
    • 2015
  • 손 영역 추적에서는 피부색이 가장 유용한 정보 중 하나이다. 그런데 손 영역과 얼굴 영역이 서로 겹치거나 가까이 있을 때 손 영역의 추적결과인 바운딩이 얼굴 영역까지 불필요하게 확장되는 문제점이 존재한다. 본 논문에서는 얼굴 영역 추적결과를 손 영역 추적에 사용한다. 구체적으로, 얼굴 영역 내에 손 영역의 바운딩이 침투하지 않도록 한다. 실험결과, 얼굴 영역 추적결과를 사용한 경우 그렇지 않은 경우에 비해 손 영역의 바운딩을 정확히 예측하였으며 초당 30~35 프레임의 빠른 계산속도를 유지하였다.

비전 기반의 모바일 로봇 제어 시스템 (Vision-based Mobile Robot Control System)

  • 장재식;김은이;장상수;김항준
    • 한국정보과학회:학술대회논문집
    • /
    • /
    • pp.781-783
    • /
    • 2005
  • 본 논문은 손 모양 인식을 이용한 비전 기반의 보행 로봇 제어 시스템을 제안한다. 손의 모양을 인식하기 위해서 움직이는 카메라 영상으로부터 정확한 손의 경계선물 추출하고 추적하는 일이 선행되어야 한다. 따라서 본 논문에서는 민 시프트 방법을 사용한 활성 윤곽선 모델 기반의 추적 방법을 제안한다. 제안된 시스템은 손 추출기, 손 추적기, 손 모양 인식기 그리고 로봇 제어기, 4개의 모들로 구성된다. 손 추출기는 영상에서 미리 정의된 손의 모양을 가지는 피부색 영역을 추출한다. 추출된 손의 추적은 활성 윤관선 모델과 민 시프트 방법을 사용하여 실행된다. 그 후 Hue moments를 사용하여 추적된 손의 모양을 인식한다. 제안된 방법을 평가하기 위해서 본 논문에서는 2족 보행 로봇 KHR-1에 제안된 방법을 적용 한다.

  • PDF

RGB 카메라 기반 실시간 21 DoF 손 추적 (RGB Camera-based Real-time 21 DoF Hand Pose Tracking)

  • 최준영;박종일
    • 방송공학회논문지
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • 본 논문은 단안의 RGB 카메라를 이용하는 실시간 손 추적 방법을 제안한다. 손은 높은 degrees of freedom을 가지고 있기 때문에 손 추적은 높은 모호성을 가지고 있다. 따라서 제안하는 방법에서는 손 추적의 모호성을 줄이기 위해서 단계별 손 추적 전략을 채택하였다. 제안하는 방법의 추적 과정은 손바닥 포즈 추적, 손가락 yaw 움직임 추적, 그리고 손가락 pitch 움직임 추적, 세 단계로 구성되어 있으며, 각 단계는 순서대로 수행된다. 제안하는 방법은 손은 평면으로 간주할 수 있다고 가정하고, 평면 손 모델을 이용한다. 평면 손 모델은 손 모델을 현재의 사용자 손 모양에 맞춰서 변경하는 손 모델 재생성을 가능하게 하는데, 이는 제안하는 방법의 강건성과 정확도를 증가시킨다. 그리고 제안하는 방법은 실시간 연산이 가능하고 GPU 기반 연산을 요구하지 않기 때문에, Google Glass와 같은 모바일 장비를 포함한 다양한 환경에 적용가능하다. 본 논문은 다양한 실험을 통해서 제안하는 방법의 성능과 효용성을 입증한다.

결합된 파티클 필터에 기반한 강인한 3차원 손 추적 (Robust 3D Hand Tracking based on a Coupled Particle Filter)

  • 안우석;석흥일;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • 손 추적 기술은 인간과 기계와의 효율적인 의사소통을 위한 손동작 인식 기술의 핵심 기반 기술이다. 최근의 손 추적 연구는 3차원 손 모델을 이용한 연구 방향에 초점을 맞추고 있고, 기존의 2차원 손 모델을 이용한 방법보다 강인한 추적 성능을 보이고 있다. 본 논문에서는 결합된 파티클 필터에 기반한 새로운 3차원 손 추적 방법을 제안한다. 이는 전역적 손 형상과 지역적 손가락 움직임을 분리하여 추정하고, 각각의 추정 결과를 서로의 사전 정보로 이용하여 기존의 방법보다 빠르고 강인한 추적을 가능하게 한다. 또한, 추적 성능 향상을 위해 색상과 에지를 함께 고려한 다중 증거 결합 방법을 적용한다. 실험결과, 제안하는 방법은 복잡한 배경이나 동작에서도 강인한 추적 결과를 보였다.

국부적인 조명변화와 복잡한 배경에 강인한 손 끝 좌표 추적 (Fingertip Tracking Robust to Local Illumination Changes and Cluttered Background)

  • 김유호;김종선;이준호
    • 대한전자공학회:학술대회논문집
    • /
    • /
    • pp.439-442
    • /
    • 2000
  • 본 연구는 손의 동작변화로 인한 손 영역의 국부적인 조명변화와 복잡한 배경환경에서 손 영역의 검지좌표를 안정적으로 검출, 추적하여 마우스 포인터를 제어하는 핑거 마우스 시스템을 제안하였다. 손의 동작변화로 인한 국부적인 조명변화에 강인한 손 영역 검출을 위한 적응적인 on-line학습법을 제안하였으며 복잡한 배경에서도 안정적인 손 영역 추적이 가능하도록 칼만 트렉킹과 차영상을 이용한 모션 세그멘테이션을 복합적으로 적용하였다. 실험결과 복잡한 배경과 손의 움직임에 상관 없이 검지 좌표를 안정적으로 추적 할 수 있었다.

  • PDF

H.264/AVC Motion Vector를 이용한 손 추적 알고리즘 (A Hand Motion Tracking Algorithm using Motion Vectors in H.264/AVC Compression)

  • 염주혁;이혁재
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • /
    • pp.147-149
    • /
    • 2011
  • 사용자에게 편리한 인터페이스를 제공하는 IT 기기가 널리 보급되면서 직관적인 인터페이스 기술에 대한 관심이 높아지고 있다. 이미지 센서로 입력된 사람의 손 모양이나 움직임을 이용하는 인터페이스가 그 중 하나이다. 한 편 이미지 센서 영상을 저장하기 위하여 H.264/AVC와 같은 영상 압축 기술이 사용된다. 영상을 압축하기 위해 부호기는 모든 Macroblock에서 움직임 추정을 수행한다. 추정된 움직임 정보는 손 움직임을 인식하는데 사용될 수 있고 이를 통해 전자 기기에 명령을 내리는 인터페이스 기술의 한 부분을 구현하는 것이 가능하다. 본 논문은 H.264/AVC 부호기의 Motion Vector를 이용하는 손 추적 알고리즘을 제시한다. 제시된 알고리즘은 손 움직임 추적의 정확도를 향상시키기 위하여 Motion Vector보다 신뢰도가 높은 Motion Density Map 정보를 사용한다. 이 정보를 이용하여 이동한 손을 포함하는 손 윈도우를 결정한다. 실험 결과를 통하여 제시된 알고리즘이 손의 움직임을 추적하는 것을 확인할 수 있다.

  • PDF

깊이 영상 기반 손 영역 추적 및 손 끝점 검출 (Hand Region Tracking and Fingertip Detection based on Depth Image)

  • 주성일;원선희;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • v.18 no.8
    • /
    • pp.65-75
    • /
    • 2013
  • 본 논문에서는 깊이 영상만을 이용하여 손 영역 추적 및 손 끝점 검출 방법을 제안한다. 조명 조건의 영향을 제거하고 빠르고 안정적인 정보 획득을 위해 깊이 정보만을 이용하는 추적 방법을 제안하고, 영역 확장 방법을 통해 추적 과정 중에 발생할 수 있는 오류에 대한 판단 방법과 다양한 제스처 인식에 응용이 가능한 손 끝점 검출 방법을 제안한다. 먼저 추적점을 찾기 위해 중심점 전이 과정을 통해 최근접점을 찾고 그 점으로부터 영역 확장을 통해 손 영역과 경계선을 검출한다. 그리고 영역 확장을 통해 획득한 무효경계선의 비율을 이용하여 추적영역에 대한 신뢰도를 계산함으로써 정상 추적 여부를 판단한다. 정상적인 추적인 경우, 검출된 손 영역으로부터 윤곽선을 추출하고 곡률 및 RANSAC, 컨벡스 헐(Convex-Hull)을 이용하여 손 끝점을 검출한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 추적 및 손 끝점 검출 알고리즘의 효율성을 입증한다.