• Title, Summary, Keyword: 비소

Search Result 1,238, Processing Time 0.038 seconds

Removal of Arsenite and Arsenate by a Sand Coated with Colloidal Hematite Particl (나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거)

  • 고일원;이상우;김주용;김경웅;이철효
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • Hematite-coated sand was examined for the application of the PRB (permeable reactive barrier) to the arsenic-contaminated subsurface in the metal mining areas. The removal efficiency of As in a batch and a flow system was investigated through the adsorption isotherm, removal kinetics and column experiments. Hematite-coated sand followed a linear adsorption isotherm with high adsorption capacity at low level concentrations of As (<1.0 mg/L). In the column experiments, high content of hematite-coated sand enhanced the removal efficiency, but the amount of the As removal decreased due to the higher affinity of As (V) than As (III) and reduced adsorption kinetics in the flow system. Therefore. the amount of hematite-coated sand, the adsorption affinity of As species and removal kinetics determined the removal efficiency of As in a flow system.

울산광산 내 비소로 오염된 광미의 자연저감 능력에 대한 pH와 산화-환원 전위 영향

  • Park Maeng-Eon;Seong Gyu-Yeol;Lee Pyeong-Gu;Kim Pil-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.182-185
    • /
    • 2005
  • 울산광산 내 지표수와 토양 중의 공극수에 함유되어 있는 비소의 오염현황을 파악하고, pH와 산화-환원 전위 값의 변화에 따른 자연저감 능력을 평가하였다. 유비철석을 비롯한 비소함유 광물은 높은 산화-환원 전위 값과 낮은 pH 조건에서 해리되며, 이후 지하수의 진화과정에서 pH가 상승함에 따라 주로 5가의 비소형태로 존재하게 된다. 울산광산지역 지하수의 비소농도는 Eh가 높은 비포화대와 포화대 지하수의 경계부에서 높은 경향을 나타내며, 포화대의 상부에서는 Eh가 비교적 일정하나 비소 농도는 다양한 분포양상을 보인다. 포화대 하부에서 비소의 함량은 매우 낮으며, Eh 감소에 따라 비소 함량이 비례적으로 감소한다. 반응경로 과정에서 비소농도는 Eh<-0.1(V)인 지하수 포화대에서 가장 낮으며, pH가 상대적으로 낮고 산화-환원 전위값이 높은 비포화대에서 증가되는 경향을 보인다. 풍화 반응 정도가 높은 광미와 토양에서 비소농도 높으나, 용출실험에서 비소가 기준치 이하로 용출되는 것은 풍화반응과 토양에 의한 비소의 자연저감이 진행되고 있음을 반영한다. RMB를 이용한 중금속 제거능력 평가 실내실험에서, 산성과 알칼리 조건 모두에서 제거율이 높은 것으로 나타났다. 인회석과 철산화물질로 구성된 RMB는 친환경적이고 2차 오염문제를 극복할 수 있는 물질로서, 비소의 자연저감 능력을 향상시킬 수 있는 정화처리제로 활용이 가능할 것으로 판단된다.

  • PDF

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

Treatment Technologies for Arsenic Removal from Groundwater: review paper (비소오염지하수의 현장처리기술동향: 리뷰)

  • Bang Sunbaek;Choe Eun Young;Kim Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.38 no.5
    • /
    • pp.599-606
    • /
    • 2005
  • Arsenic is a significantly toxic contaminant in groundwater in many countries. Numerous treatment technologies have been developed to remove arsenic from groundwater. The USEPA recommends several technologies as the best available technology (BAT) candidates for the removal of arsenic. Based on the USEPA classification, arsenic treatment technologies can be divided into four technologies such as precipitation, membrane, ion exchange, and adsorption technology. The recent amendment of arsenic drinking water standard from 50 to $10{\mu}g/L$ in the United States have impacted technology selection and application for arsenic removal from arsenic contaminated groundwater. Precipitation technology is most widely used to treat arsenic contaminated groundwater and can be applied to large water treatment facility. In contrast, membrane, ion exchange, and adsorption technologies are used to be applied to small water treatment system. Recently, the arsenic treatment technology in the United States and Europe move towards adsorption technology to be applied to small water treatment system since capital and maintenance costs are relatively low and operation is simple. The principals of treatment technologies, effect factors on arsenic removal, arsenic treatment efficiencies of real treatment systems are reviewed in this paper.

Studies on the Properties of lntracelluar Arsenic Binding Substances in the Rat Liver (흰쥐 간조직의 세포내 비소결합물질의 특성에 관한 연구)

  • 최임순;부문종;김충현
    • The Korean Journal of Zoology
    • /
    • v.33 no.4
    • /
    • pp.476-492
    • /
    • 1990
  • Sodium arsenite (As) aqueous solution containing 4 ppm wss given to male rats for 15 days as drinking water. Electrophoretic pattern of liver cytosol from As-fed rats appeared to be significantly different from that of the control rats. Although the normal protein content of the cytosol fraction of As-fed rat liver was decreased, 8 stress proteins were increased. In liver cytosol fractions of As-treated rat, one kind of arsenic-binding substance (AsBS) was observed. Molecular weight of AsBS was identified to be 500 D and composition of amino acid was glycine, glutamic acid and cysteine. Glutathione (GSH) appeared to bind to arsenic and GSH-As complex showed the same mobility as AsBS on gel filtration chromatography. GSH conjugated As prevented As from inhibiting respiration, conformational change and swelling-contration of mitochondria. According to the above results. it is concluded that in vfuo treated arsenic stimulated synthesis of stress protein, and arsenic-binding substance might be glutathione and have a protective role against arsenic toxicity.

  • PDF

Arsenic Toxicity of Rice and its Interrelation with Zinc (수도(水稻)에 대(對)한 비소피해(砒素被害) 및 아연(亞鉛)과의 교호작용(交互作用))

  • Oh, Yong Taeg;Sedberry, J.E. Jr.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.1
    • /
    • pp.43-47
    • /
    • 1974
  • Arsenic toxicity of rice and the interaction between As and Zn were studied in a greenhouse experiment. The symptom of As toxicity of rice was the growth retardation of tops and roots accompanied by wilting. The toxicity was observed even on the 1 ppm arsenic treated soils. Zinc applictiaon reduced As toxicity but it did not depress the As uptake by rice, while As reduced the Zn uptake by rice. There-fore, the applied Zn apparantly conpensated for the depressed Zn up-take due to As toxicity. Iron deficiency was observed during the experiment, and this was probably due to the relatively high soil reaction, pH of the Crowley silt loam.

  • PDF

Hydrochloric Acid Leaching of Arsenic from Arsenic-Bearing Copper Slime. (동전련 부산물인 함비소 동슬라임으로부터 염산에 의한 비소의 침출)

  • 유용주;황필규
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 1992
  • The hydrochloric acid leaching has been studied as a fundamental experiment on the recovery of arsenic from arsenic-bearing copper slime in copper electrorefining. The slime is mainly composed of $\beta-Cu_3As$ Which is intermetallic compound of CU and As. And the minor components are $CU_2O$ and CusAs in the slime. The optimum conditions of leaching of the slime were found to be as follows : 6N hydrochloric acid, particle size passed through 140 mesh, leaching for 150 min at $60^{\circ}C$, ratio of HCI/slime of 3 to 1 ; where 98 percent of arsenic were leached out of the As-bearing slime.

  • PDF

플럭 형성 비소 오염토양에 대한 토양세척기법의 적용성 연구

  • Hwang Jeong-Seong;Choi Sang-Il;Han Sang-Geun;Kim Ju-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.264-267
    • /
    • 2005
  • 플럭 형성 비소 오염토양에 대한 토양세척기법의 적용성 실험결과, 세척용액 100 mM과 500 mM의 농도에서 대상 토양에 대한 비소 용출량은 수산화나트륨이 염산보다 높은 효율을 보였으며, 농도 1000 mM의 경우에는 염산이 비교적 우세한 세척효율을 보였다. 토양오염공정시험법에 의한 세척후 토양내 잔류비소 농도의 경우, 염산이 수산화나트륨과 비슷하거나 다소 우세함을 알 수 있었다. 세척 대상 토양의 Cut-off size limit을 선정하여 토양세척시 생성되는 플럭을 제거하지 않고 반복 세척한 결과, 수산화나트륨의 농도 200 mM은 1000 mM에 비하여 잔류된 비소량이 비슷하거나 비교적 높았으며, 2가지 농도에 대하여 총 5회 반복 세척한 토양의 비소 농도는 토양환경보전법의 가지역 우려기준 농도인 6 mg/kg에 근접한 결과를 보였으나, 염산의 경우 총 5회 세척시 비소의 농도가 약 9 mg/kg으로 비소 잔류량이 보다 큼을 알 수 있었다. 플럭을 제거한 후 반복 세척시 수산화나트륨의 농도 1000 mM이 200 mM에 비하여 토양 세척효율이 증가하였으며, 1000 mM로 5회 세척시 잔류비소 농도가 가지역 우려기준 농도에 근접한 약 6.7 mg/kg이었고 염산을 이용하여 세척한 경우에는 3회 세척시 약 6.7 mg/kg 4, 5회 반복 세척시 각각 약 3.9, 3.3 mg/kg으로 가지역 우려기준에 적합한 농도조건이 됨을 알 수 있었다.

  • PDF

Risk Assessment of Arsenic in Agricultural Products (농산물 중 비소 위해평가)

  • Choi, Hoon;Park, Sung-Kug;Kim, Dong-Sul;Kim, Mee-Hye
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.266-272
    • /
    • 2010
  • The present study was carried out to assess exposure & risk for Korean by total and inorganic As intake through agricultural products. Total arsenic analysis was performed using microwave device and ICP-MS. 50% MeOH extraction and anion-exchange HPLC-ICP-MS method has been used to determine arsenic species. 329 samples covering 20 kinds of agricultural products were collected from various retail outlets and markets across Korea. The concentration of total As was in the range of 0.001~0.718 mg/kg, while inorganic and organic arsenic species in all samples was not determined. For risk assessment, probable daily intake was calculated and compared with provisional tolerable weekly intake (PTWI, 15 ${\mu}g$/kg b.w./week for inorganic arsenic) established by JECFA. The median daily exposure to total and inorganic As by intake of agricultural products except rice was ranged 0.0002~0.012, 0.0001~0.001 ${\mu}g$/kg b.w./day, corresponding to 0.01~0.5%, 0.002~0.1% of PTWI, respectively. The median level of total and inorganic As intake through rice was 0.603 and 0.041 ${\mu}g$/kg b.w./day, and 28.1% and 1.9% of PTWI, respectively. Therefore, the level of overall exposure to arsenic for Korean through agricultural products was below the recommended JECFA levels, indicating of least possibility of risk.

Arsenic Dissolution and Speciation in Groundwater: review paper (지하수에서 비소의 용해 및 분리(speciation): 리뷰)

  • Kim Myoung-Jin
    • Economic and Environmental Geology
    • /
    • v.38 no.5
    • /
    • pp.587-597
    • /
    • 2005
  • This review deals with arsenic chemistry and its occurrence in groundwater. Specifically, the paper gives an overview regarding chemical and physical properties of arsenic species, oxidation of As(III), geochemical processes related to the fate and transport of arsenic, arsenic leaching from soil, and mechanism of arsenic leaching from arsenic-containing minerals.