• Title, Summary, Keyword: 불확실성 범위

Search Result 246, Processing Time 0.041 seconds

The Uncertainty Analysis of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT모형의 예측불확실성 분석)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Shin, Hyung-Jin;Lee, Ji-Wan;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.29-29
    • /
    • 2011
  • SWAT (Soil and Water Assessment Tool) 모형은 물리적 기반의 준분포형 강우-유출 모형으로서, 대규모의 복잡한 유역에서 장기간에 걸친 다양한 종류의 토양과 토지이용 및 토지관리 상태에 따른 유출과 유사 및 오염물질의 거동에 대한 토지관리 방법의 영향을 예측이 가능하여, 수자원 관리 계획 및 유역관리를 위한 의사결정 지원 등 그 적용 범위가 매우 광범위하다. 이러한 모형의 적용성 검증을 위해서는 매개변수 민감도 분석 및 검 보정, 예측 불확실성 분석을 필요로 한다. 최근 수문 모델의 불확실성을 분석하기 위한 다양한 기법들이 개발 되었는데, 본 연구는 충주댐 유역(6,581.1 m)을 대상으로 유역출구점의 실측 일 유출량 자료(1998~2003)를 바탕으로 SWAT 모형의 유출관련 매개변수(총 18개)에 대한 불확실성 분석을 실시하였다. 이때 사용된 분석 기법으로는 SUFI2 (Sequential Uncertainty FItting algorithm 2), GLUE (Generalized Likelihood Uncertainty Estimation), ParaSol (Parameter Solution)등을 적용 하였다. 이러한 기법은 모두 SWAT-CUP (SWAT-Calibration Uncertainty Program, Abbaspour, 2007) 모형에 탑재되어있으며, 모형의 결과로써 검 보정, 매개변수의 민감도 분석, 각종 목적 함수 및 불확실성의 범위 등이 자동으로 산출 되므로 모형의 사용자가 불확실성 평가 기법의 분석 및 비교를 손쉽게 할 수 있다. 그 결과 대표적인 목적 함수인 결정 계수( $^2$)와 NSE (Nash-Sutcliffe Model Efficiency)는 모두 0.65에서 0.92사이의 값을 나타내어 대체적으로 모의가 잘 이루어졌음을 알 수 있었다. 그러나 불확실성의 범위를 나타내는 지표인 p-factor 및 r-factor에서는 평가 기법 별로 그 차이가 확연하게 드러났다. 여기서 p-factor는 불확실성 범위에 실측치가 포함되는 비율이며, r-factor는 불확실성의 상대적인 범위로 각각 1과 0에 가까울수록 모의 기법의 성능이 우수함을 의미한다. 세 가지 알고리듬 중에서 SUFI2의 p-factor가 약 0.51로 가장 높게 나타났으며, ParaSol의 r-factor가 0.00으로 가장 작게 나타났다. 여기서 p-factor는 불확실성 범위에 실측치가 포함되는 비율이며, r-factor는 불확실성의 상대적인 범위를 의미한다. 본 연구의 결과는 SWAT 모형을 이용한 수문모델링에서 수문분석에 따른 예측결과의 불확실성을 정량적으로 평가함으로서, 모형의 적용성 평가 및 모의결과의 신뢰성 확보에 근거자료로 활용이 가능할 것으로 판단된다.

  • PDF

A Bayesian Approach to Storm Water Management Model (SWMM) for the Estimation of Parameters and Their Uncertainty (Bayesian 기법과 연계한 SWMM 매개변수 추정 및 불확실성 분석)

  • Kim, Jang-Gyeong;Ban, U-Sik;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.110-110
    • /
    • 2016
  • 도시 유역의 강우-유출 모의에는 지표 투수율 및 하수관거 영향 등 인위적 배수계통의 영향을 고려할 수 있는 도시유출모형이 널리 이용되고 있으며, 모형 검증을 통해 모의 성능을 평가한다. 도시유출모형의 검증은 일반적인 강우-유출 모형과 같이 강우사상별 유량의 관측시계열과 모의시계열의 목적함수가 최소가 되는 최적 매개변수를 탐색하는 과정이다. 도시유출모형의 검증에서 발생하는 문제점은 크게 다음과 같다. 첫째, 대규모 도시 유역의 복잡하고 다양한 하수관거에 대한 최적매개변수를 관거별로 구하는 것은 물리적으로 불가능하다. 따라서 동일 배수분구내 하수관거의 매개변수 값은 동일하다고 가정하거나, 모형 단순화 과정을 통해 매개변수의 물리적 범위 내에서 최적해를 탐색해야 하는 단순화에서 기인한 불확실성이 있다. 둘째, 다양한 매개변수들의 물리적 범위를 고려하기 위해서는 전역최적화기법이 유효하다. 그러나 전역최적화 종류, 목적함수, 모의횟수, 목표성능별 최적 매개변수 결과가 각각 다르므로 추정된 최적 매개변수의 범위에 대한 불확실성이 있다. 이에 본 연구에서는 Bayesian 모형과 EPA SWMM(Storm Water Management Model)을 연계하여 도시유출모형의 매개변수 불확실성을 정량적으로 분석할 수 있는 모형을 제안하고자 한다. 이를 위해 서울 우이천 유역을 대상으로 SWMM 모형을 구축하고, 절단 정규분포(truncated Gaussian distribution)를 사전분포(prior)로 가정하여 매개변수의 물리적 범위를 고려하였다. 최종적으로 결합확률분포로 계산된 각 매개변수간 사후분포를 통해 모의된 유출량의 불확실성을 정량적으로 분석하였다. 본 연구에서 제안된 모형은 대규모 도시 유역의 도시유출모형 구축 시 다양한 매개변수의 물리적 범위를 고려한 최적화와 동시에 내재된 불확실성을 정량적으로 분석할 수 있으므로, 침수예측 및 홍수예경보 등의 문제에서 상당한 신뢰성을 확보할 수 있을 것으로 판단된다.

  • PDF

A study on the uncertainty analysis of LENS-GRM using formal and informal likelihood measure (정형·비정형 우도를 이용한 LENS-GRM 불확실성 해석)

  • Lee, Sang Hyup;Choo, Inn Kyo;Yu, Yeong Uk;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.317-317
    • /
    • 2020
  • 수재해는 수자원 인프라의 부족 및 관리 미흡 등 많은 요인들이 있지만 강우의 유무와 크기가 가장 원초적인 요인들 중 하나이다. 정확한 강우량 추정 및 강우발생시간 예측은 수재해로 인한 피해를 예방하고 빠르게 대처할 수 있다. 그러나 강우예측에는 많은 불확실성을 내포하고 있기 때문에 이러한 불확실성을 이해하고 줄여 나가는 것이 필요하다. 최근 컴퓨터의 성능의 발전에 비례해 강우 예측 자료들도 점진적으로 발전을 거듭하고 있다. 이를 강우-유출 모형에 적용시 유출량 예측의 정확성 또한 비례하여 한층 더 발전할 수 있을 것이다. 하지만 신뢰성이 낮은 입력자료를 대상으로 하는 유출해석 모형은 많은 불확실성을 내포할 것이다. 따라서 본 연구에서는 위천 유역에 대해 LENS(Limited area ENsemble prediction System) 강우앙상블 예측자료의 적용성을 검토하고 그리드 기반 강우 유출 모델 GRM(Grid based Rainfall-runoff Model) 에 적용하여 유출예측의 불확실성을 평가하고자 하였다. 또한 강우예측 및 유출예측은 수 많은 매개변수를 포함하며 최종적인 예측은 더 큰 불확실한 범위로 산출될 수 있다. 이에 따라 본 연구에서는 Python3 기반 코딩으로 LENS 자료 구축 및 GRM 모형의 매개변수 보정을 각 2000회 씩에 걸쳐 총 2회 실시하여 수문학적, 지형학적 인자에 따른 불확실성 범위를 보정하고자 하였다. 매개변수의 보정은 비정형우도(Informal likelihood) NSE, 정형우도(Formal likelihood) Lognormal(Log-likelihood function)의 우도에 따른 행위모델을 산정하여 보정하였다. 따라서 본 연구에서는 선행연구들을 참고한 정형, 비정형 우도의 임계치를 이용한 불확실성해석에 적용하였으며 이는 사용자의 행위모델선정 임계치 범위 선정으로 인한 불확실성을 줄여나감에 기여할 수 있을것으로 사료된다.

  • PDF

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

A Critical Review of Literature: Mid-Range Nursing Theory of Uncertainty in Illness (중간범위 간호이론인 Mishel의 질병에서의 불확실감에 관한 문헌고찰)

  • Kang, Younhee
    • Korean Journal of Adult Nursing
    • /
    • v.15 no.1
    • /
    • pp.146-153
    • /
    • 2003
  • 연구목적: 본 연구는 대표적인 중간범위 간호이론인 Mishel의 Uncertainty in Illness모델에 관한 연구문헌 고찰이다. 기존의 간호이론에 근거해서 새로운 간호연구가 시행되고 있으며, 이러한 연구들의 결과는 또한, 근거이론을 지지 및 수정보완을 통해서 간호이론의 타당성과 유용성을 강화해왔다. Mishel의 모델에 근거한 불확실감에 관한 연구의 수행에 앞서, 근거이론에 관한 현지식의 상태와 부족한 영역을 탐구하여, 이에 기여할 수 있는 연구계획을 수립하는데 문헌고찰의 주요한 목적이 있다. 연구방법: 본 문헌고찰은 중간범위 간호이론인 Mishel's Uncertainty in Illness에서의 주요 개념간의 관계에 대해서 선행연구 결과를 토대로 분석하였다. 연구결과: 불확실감의 선행요소들(antecedents)과 불확실감, 불확실감의 평가(appraisal of uncertainty), 불확실감 모델내에서 건강 통제위(health locus of control)의 역할, 및 불확실감의 결과, 적응(adaptation)에 관하여 고찰하였다. 결론: 문헌고찰 결과로서, 불확실감 이론에 관한 현지식의 상태를 확인하였고 이 이론의 타당성과 유용성을 확인하기 위한 추후연구에 대한 방향도 제언되었다.

  • PDF

Statistical Effective Interval Determination and Reliability Assessment of Input Variables Under Aleatory Uncertainties (물리적 불확실성을 내재한 입력변수의 확률 통계 기반 유효 범위 결정 방법 및 신뢰성 평가)

  • Joo, Minho;Doh, Jaehyeok;Choi, Sukyo;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1099-1108
    • /
    • 2017
  • Data points obtained by conducting repetitive experiments under identical environmental conditions are, theoretically, required to correspond. However, experimental data often display variations due to generated errors or noise resulting from various factors and inherent uncertainties. In this study, an algorithm aiming to determine valid bounds of input variables, representing uncertainties, was developed using probabilistic and statistical methods. Furthermore, a reliability assessment was performed to verify and validate applications of this algorithm using bolt-fastening friction coefficient data in a sample application.

Two-dimensional Inundation Analysis using Stochastic Rainfall Variation in Nam-River Basin (남강유역에서의 추계학적 강우변동 생성기법과 연계한 2차원 침수해석)

  • Ahn, Ki-Hong;Lee, Jin-Young;Han, Kun-Yeun;Cho, Wan-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.610-614
    • /
    • 2010
  • 지구온난화에 따른 이상기후 현상으로 불확실성에 대한 고려가 더욱 중요해진 지금 설계빈도의 무조건적인 상향조정에 의존하기보다는 추계학적 방법을 도입한 수문량의 확충 및 매개변수의 불확실성을 고려하기 위한 연구가 활발히 진행중이다. 본 연구에서는 강우발생의 불확실성을 반영하여 제내지에서의 침수 범위를 GIS상에서 검토하기 위해 log-ratio 방법, Johnson 시스템, 직교변환을 활용한 다변량 Monte Carlo 기법으로 추계학적 시간에 따른 강우변동을 생성하였다. 생성된 강우변동 결과를 토대로 수문분석, 홍수위 분석 등을 실시하고 FLUMEN 모형을 적용하여 해당유역에 대한 홍수범람시 침수범위를 산정하였다. 본 연구결과는 실제 강우의 불확실성을 반영하고 있어 시 공간적 강우특성이 반영된 유역별 주민대피지도, 홍수위험지도 등을 제작하는데 활용될 수 있을 것으로 기대된다.

  • PDF

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

The Interpreter for the Bounded of the Uncertainty to transfer a Class of Time-varying Linear System with the uncertainty to the Time-invarying Linear System (불확실성을 갖는 선형 시변 시스템의 선형 시불변 시스템 변환을 위한 불확실성 유계 해석)

  • Cho, Do-Hyeoun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • In this paper, we consider the input-state(I/S) transformation for the time-varying linear system with the uncertainty because of to determine the bounded range of the uncertainty. And we get the time-invarying linear system after the I/S transformation. We present the necessary sufficient condition for the I/S transformation. The transformed system represent the system with the multiple integral. We verify the proposal algorithm via the example and examine.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.