• Title, Summary, Keyword: 불확실성

Search Result 3,905, Processing Time 0.044 seconds

Uncertainty Propagation and Quantification in Climate Change Impact Assessment for Hydrology (수자원분야 기후변화 영향평가에서의 불확실성 전파와 정량화)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.15-15
    • /
    • 2015
  • 기존 기후변화 영향평가 불확실성 연구들은 거의 대부분 GCM의 불확실성이 가장 크다고 결론내리고 있으나, ES 불확실성과의 정량적 비교는 하지 못했으며, 기존 접근방법은 민감도 분석 수준에 머무르고 있다. 이에 본 연구에서는 기후변화 영향평가 각 단계별 불확실성을 포괄적으로 정량화하고 수행단계별 불확실성의 전파정도를 추정할 수 있는 새로운 approach를 제안하였다. 첫째, 전체 불확실성, 각 단계별 불확실성 증가 정도, 각 단계별 불확실성의 비율을 제시할 수 있는 새로운 approach를 제안하였다. 또한 불확실성을 정량적으로 추정할 수 있는 방법으로 maximum entropy(이하 ME)를 선정하였으며, 이를 본 연구에서 제시한 approach에서 적용성을 살펴보았다. 둘째, 본 연구에서는 기후변화 영향평가 불확실성 단계별 정량화를 위해 2개 배출시나리오, 4개 GCM 시나리오, 2개 상세화기법, 2개 수문모형을 사용하여 기본적 기후변화 영향평가 단계를 모두 수행하였다. 기존 approach에서는 GCMs의 변화율(89.34)이 가장 커 GCMs의 불확실성이 가장 큰 것으로 나타났으나 제시한 approach에서는 배출시나리오의 불확실성이 전체 대비 58.66 %로 기후변화 영향평가에서 가장 큰 불확실성 발생 원인으로 파악되었다. 모형 불확실성에서는 GCMs의 불확실성(전체 대비 33.57 %)이 가장 높게 나타났다. 또한 배출시나리오의 ME는 3.32, GCMs의 ME는 5.22, 상세화기법의 ME는 5.57, 수문모형의 ME는 5.66으로 단계적으로 불확실성이 증가하였다. 다음으로 유량과 강수를 이용하여 불확실성 정량화를 수행하였으며, 강수를 이용한 불확실성 정량화에서는 유량을 이용한 결과와 다르게 배출시나리오 다음으로 상세화기법의 불확실성이 큰 것으로 나타나 어떤 수문변수에 초점을 두느냐에 따라 불확실성 정량화저감 노력 대상이 달라질 수 있음을 제시하였다. 마지막으로 자연변동성에 의한 불확실성이 기후변화 전체 불확실성의 45.47 % 정도로 나타났으며, 이는 미래 기후변화에 의해 발생하는 불확실성이 과거 자연변동보다 2배 이상으로서, 기후변화에 의한 미래전망의 불확실성이 매우 크게 증가한다는 매우 중요한 결과를 제시하였다.

  • PDF

Uncertainty Analysis of Radar-Rainfall Estimation Process Using Three Uncertainty Quantitative Methods (3가지 불확실성 정량화 방법을 활용한 레이더 강우량 추정과정에서의 불확실성 분석)

  • Lee, Jae-Kyoung;Lee, Han-Yong;Lee, Hae-Gwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.204-204
    • /
    • 2018
  • 수문 기상레이더는 강우량을 바로 추정하지 못하고 여러 단계의 정량적 강우량 추정과정을 거치게 되므로 많은 불확실성 발생요소가 존재한다. 불확실성 관련한 기존 연구들은 정량적 레이더 기반 강우량 추정과정에서 보정방법을 이용하여 각 단계별 불확실성을 줄이는 연구들을 수행하였다. 하지만 기존 연구들은 전체 과정에 대한 포괄적인 불확실성을 나타내지 못하고 각 단계별 불확실성의 상대적인 비율도 제시하지 못하는 단점이 있다. 본 연구에서는 정량적 레이더강우량 추정과정의 각 단계별 불확실성을 정량화하고 불확실성 전파를 나타낼 수 있는 적합한 방법을 제시하였다. 첫 번째로 초기와 최종 불확실성, 각 단계별 불확실성의 변동과 상대적인 비율을 나타낼 수 있는 새로운 개념을 제안하였다. 두 번째로 레이더기반 추정과정의 불확실성 정량화와 전파과정을 분석하기 위해 Maximum Entropy Method (MEM), Uncertainty Delta Method (UMD), Modified-Narrow Uncertainty Method (M-NUM)를 적용하였다. 세 번째로 레이더기반 강우량 추정과정의 불확실성 정량화를 위해 2개 품질관리 알고리즘, 2개 강우량 추정방법, 2개 후처리 강우량 보정방법을 2012년 여름철 18개 사례에 대하여 사용하였다. 적용결과, 최종 불확실성(후처리 강우량 보정 불확실성)이 초기 불확실성(품질관리 불확실성)보다 작게 나타나 불확실성이 감소하는 것으로 나타났다. 하지만 레이더강우량 추정단계의 불확실성은 증가하는 것으로 나타났다. 또한 레이더강우량 추정과정에서 각 단계별로 적합한 방법을 선정하는 것이 각 단계별로 불확실성이 감소시킬 수 있음을 확인하였다. 따라서 본 연구는 새로운 방법이 명확히 불확실성을 정량화할 수 있으며 정확한 정량적 레이더 강우추정에 기여할 것으로 판단한다.

  • PDF

Uncertainty analysis of quantitative rainfall estimation based on weather radars (기상레이더 기반 정량적 강수추정에서의 불확실성 분석)

  • Lee, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.23-23
    • /
    • 2017
  • 기상레이더는 강우량을 바로 추정하지 못하는 특성으로 인해 정량적 강우산출 과정 중에 다양한 원인으로 인해 불확실성 발생 요소가 존재하나 이를 정량화하고 저감하는데 많은 어려움이 있다. 원인을 살펴보면, 첫째, 기상레이더의 관측에서부터 정량적 강우량 추정까지 일련의 과정에 대한 포괄적으로 불확실성 정량화와 분석이 이루어지지 못하며, 둘째, 전체 불확실성이 어느 정도 되는지 제시하지 못하므로 각 단계별 불확실성이 전체 불확실성 대비 어느 정도 비율이 되는지 제시하지 못한다. 마지막으로 기존 연구들은 불확실성을 줄이고자 여러 방법을 사용하고 있으나 어느 정도 효용성이 있는지 불확실성 측면에서 제시하지 못하고 있다. 따라서 본 연구에서는 Maximum Entropy(ME)와 Uncertainty Delta Method(UMD)를 이용한 접근방법을 제안하여 기상레이더를 활용하여 정량적 강우량을 추정하는 일련의 과정에서 단계별로 불확실성이 어떻게 전파되는지 추정하였다. 본 연구에서는 한반도 전역을 대상으로 2012년 여름철(6~8월)에 발생한 18개 강우사례를 이용하여 품질관리(Open Radar Product Generator 품질관리 알고리즘, fuzzy 알고리즘), 강우추정(Window Probability Matching Method, Marshall-Palmer 관계식), 후처리보정(Local Gauge Correction 기법, Gauge to Radar ratio 기법)단계만을 수행하였으며, 이 결과를 바탕으로 기상레이더 정량적 강우추정 단계별 불확실성을 정량화하였다. 정량화결과, 최종적으로 관측단계의 불확실성보다 최종 불확실성이 줄어들었으나, 강우추정 단계에서 불확실성이 증가하는 것으로 나타났다. 이는 어떤 강우추정식을 적용하느냐에 따라 레이더 강우추정결과가 매우 달라질 수 있음을 의미한다. 따라서 본 연구에서 제시한 불확실성 정량화 방법을 통하여 첫째, 전체 및 단계별 불확실성을 정량화할 수 있고, 둘째, 최종 불확실성 대비 각 단계별 불확실성을 비율을 제시할 수 있으며, 마지막으로 수행단계별로 불확실성 전파과정을 파악할 수 있다. 이는 향후 정량적 레이더 강우추정 과정에 있어서 불확실성을 발생시키는 주요 원인파악과 이에 대한 집중적인 투자를 가능하게 한다. 이러한 과정을 통하여 보다 정확한 정량적 레이더 강우추정이 가능할 것으로 판단된다.

  • PDF

Reliability Analysis under Input Variable and Metamodel Uncertainty using Bayesian Approach (베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에서의 신뢰성 분석)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.97-100
    • /
    • 2009
  • 신뢰성 분석은 불확실성으로 인한 제품의 성능 변동을 안전확률이나 파괴확률로 정량화 하여 설계에 이용하기 위해 연구되어 왔다. 불확실성은, 데이터의 양에 따라-물질의 본질적인 특성으로서의 많은 데이터가 주어진 경우의 물리적 불확실성과 부족한 데이터에서의 인식론적 불확실성으로 구분되고, 불확실성을 갖는 대상에 따라-입력변수 및 근사모델 불확실성으로 구분된다. 물리적 불확실성에 대한 연구는 많이 진행되어 왔지만, 실제 산업현장에는 부족한 데이터로 인한 인식론적 불확실성이 지배적이며 이에 대한 연구는 최근에서야 진행되고 있다. 불확실성을 고려하는 신뢰성 기반 설계에는 효율성을 위해 실제모델을 대체하는 근사모델이 이용되는데, 근사모델법 자체에 대한 연구는 많이 진행되어 왔으나, 근사모델 이기 때문에 존재하는 불확실성을 고려한 연구는 최근에서야 연구되기 시작하였다. 본 연구에서는 베이지안 접근법에 기반하여 입력변수 및 근사모델 불확실성을 통합 고려하는 새로운 신뢰성 분석 기법을 제시하고 수치예제를 통해 타당성을 증명한 후, 이를 공학문제에 적용한다.

  • PDF

Uncertainty decomposition in water resources projection considering interaction effects (교호작용 효과를 고려한 수자원 전망의 불확실성 분해)

  • Ohn, Ilsang;Kim, Yongdai;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1067-1078
    • /
    • 2018
  • Water resources projection typically consists of several stages including emission scenarios, global circulation models (GCMs), downscaling techniques, and hydrological models, and each stage is a source of total uncertainty in water resources projection. Several studies proposed methods to quantify the relative contribution of each stage to total uncertainty, and we call such analysis uncertainty decomposition. Uncertainty decomposition enables us to investigate the stages yielding large uncertainties and to establish the uncertainty reduction plan that reflects them. Interactions between stages is one of the important issues to be considered in uncertainty decomposition. This study suggests a new uncertainty decomposition method considering interaction effect. The proposed method has an advantage of decomposing the total uncertainty to the uncertainty from each stage considering both the main and interactions effects. We apply the proposed method to streamflow projection for Chungju Dam basin. The results show that the uncertainties from the main effects are larger than the uncertainties from interaction effects in both summer and winter. Using the proposed uncertainty decomposition method, we show that the GCM stage is the largest source of the total uncertainty in summer and the downscaling technique stage is the one in winter among the following four stages: emission scenarios, GCMs, downscaling techniques, and hydrological models.

Reliability-Based Design Optimization Considering Variable Uncertainty (설계변수의 변동 불확실성을 고려한 신뢰성 기반 최적설계)

  • Lim, Woochul;Jang, Junyong;Kim, Jungho;Na, Jongho;Lee, Changkun;Kim, Yongsuk;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.649-653
    • /
    • 2014
  • Although many reliability analysis and reliability-based design optimization (RBDO) methods have been developed to estimate system reliability, many studies assume the uncertainty of the design variable to be constant. In practice, because uncertainty varies with the design variable's value, this assumption results in inaccurate conclusions about the reliability of the optimum design. Therefore, uncertainty should be considered variable in RBDO. In this paper, we propose an RBDO method considering variable uncertainty. Variable uncertainty can modify uncertainty for each design point, resulting in accurate reliability estimation. Finally, a notable optimum design is obtained using the proposed method with variable uncertainty. A mathematical example and an engine cradle design are illustrated to verify the proposed method.

Flood Discharge Estimation with Consideration of Uncertainty of Rainfall Spatial Distribution (강우공간분포의 불확실성을 고려한 홍수량 추정)

  • Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.294-294
    • /
    • 2012
  • 홍수위험도 추정에 있어서 불확실성은 수리, 수문, 구조, 환경 및 사회경제적인 불확실성과 관련 있으며, 수리 수문학적 불확실성은 주로 수리 수문학적 현상과 그 과정에 대한 불완전한 지식, 그리고 그 과정에 포함된 매개변수들에 대한 불완전한 지식과 관련이 있다. 이러한 여러 가지 불확실성은 홍수위험도 추정에 있어서의 불확실성에 중요한 요인으로 작용하므로 불확실성을 설명하기 위한 통계적 정보는 신뢰성 있는 홍수위험도 추정에 있어서 선행조건이라 할 수 있다. 이러한 불확실성 요인중 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 국내의 수문설계실무에서와 같이 확률홍수량을 강우빈도분석과 강우-유출모델을 이용하여 추정할 경우 확률홍수량 추정에 있어서 확률강우량 및 공간분포에 대한 불확실성과 강우-유출모델에서의 불확실성이 확률홍수량 추정에서의 불확실성에 영향을 미치며, 이후 연피해기대치 추정과 같은 홍수위험도 추정의 불확실성에도 영향을 미치게 된다. 따라서 본 연구에서는 강우공간분포의 불확실성을 고려한 홍수량 추정을 위하여 공간추계모의 기법인 CEM을 적용하여 강우공간분포의 불확실성을 정량화하고 강우-유출모델의 입력 강우량에 대한 확률분포를 추정하였다. 강우-유출해석의 경우 유효우량 및 홍수수문곡선 산정을 위하여 국내 수자원 실무에서 가장 많이 적용되고 있는 NRCS CN 기법, Clark 및 Muskingum 모델을 적용하였다. 이로부터 강우공간분포의 불확실성 추정, 소유역별 입력 강우량에 대한 확률분포의 추정 및 재현기간별 확률홍수량의 불확실성 정량화 방안을 제시하였다. 이러한 결과들은 풍수해저감대책, 유역종합치수대책 등 각종 수자원 계획 및 설계실무에서 확률홍수량 및 홍수 또는 재해위험도 추정의 신뢰성을 향상시킬 수 있는 방법론적 대안으로 활용될 수 있을 것으로 판단된다.

  • PDF

Study for Remove of Uncertainty by Identification of Ambiguity (모호성 식별에 의한 불확실성 제거에 관한 연구)

  • Lee, Eun-Ser
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • There are many uncertainty items when we're working on a software. Especially, if we don't have experience in similar field, ambiguity items have a strong influence on the system entirely. Management of ambiguity items such like uncertainty things is important the factor for reliability of software. Therefore, this research is processing the evaluation criteria for remove of uncertainty items by identify of ambiguity items. Also, this research provides criteria of uncertainty identify and processing of uncertainty items, quantitative evaluation criteria to the remove of ambiguity on software development.

한국형 표준원전 화재사건에 대한 2단계 PSA 불확실성 분석

  • 김시달;안광일;박수용;김동하;진영호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • /
    • pp.881-886
    • /
    • 1998
  • 한국형 표준 원진(울진 원전 3,4호기)화해 사건에 대한 2 단계 확률론적 안전성평가 (Level 2PSA) 에서 격납건물 파손모드에 큰 영향을 준다고 판단되는 현상들에 대한 불확실성 분석을 수행하였다. 불확실성 분석 대상은 주로 민감도분석 및 기존 2단계 PSA수행결과 중요한 인자로 선정된 8가지 주요 현상들로 국한하였다. 수행 방법은 성층화 추출방식 (Latin Hypercube Sampling)으로부터 발생된 1000개의 표본을 사용하였고, 분석결과는 두가지 불확실성 측도로 제시하였으며, 사용된 코드는 2 단계 PSA 분석용 전산코드인 CONPAS 이다. 불확실성 관리측면에서. 제일 불확실성이 높은 격납건물 파손모드인 원자로 공동바닥관통의 불확실성 인자를 줄이기 위해서는 CR-EJECT 현상에 대한 불확실성 을 줄여야 할 것이다.

  • PDF

Quantitative uncertainty analysis for the climate change impact assessment using the uncertainty delta method (기후변화 영향평가에서의 Uncertainty Delta Method를 활용한 정량적 불확실성 분석)

  • Lee, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1079-1089
    • /
    • 2018
  • The majority of existing studies for quantifying uncertainties in climate change impact assessments suggest only the uncertainties of each stage, and not the total uncertainty and its propagation in the whole procedure. Therefore, this study has proposed a new method, the Uncertainty Delta Method (UDM), which can quantify uncertainties using the variances of projections (as the UDM is derived from the first-order Taylor series expansion), to allow for a comprehensive quantification of uncertainty at each stage and also to provide the levels of uncertainty propagation, as follows: total uncertainty, the level of uncertainty increase at each stage, and the percentage of uncertainty at each stage. For quantifying uncertainties at each stage as well as the total uncertainty, all the stages - two emission scenarios (ES), three Global Climate Models (GCMs), two downscaling techniques, and two hydrological models - of the climate change assessment for water resources are conducted. The total uncertainty took 5.45, and the ESs had the largest uncertainty (4.45). Additionally, uncertainties are propagated stage by stage because of their gradual increase: 5.45 in total uncertainty consisted of 4.45 in emission scenarios, 0.45 in climate models, 0.27 in downscaling techniques, and 0.28 in hydrological models. These results indicate the projection of future water resources can be very different depending on which emission scenarios are selected. Moreover, using Fractional Uncertainty Method (FUM) by Hawkins and Sutton (2009), the major uncertainty contributor (emission scenario: FUM uncertainty 0.52) matched with the results of UDM. Therefore, the UDM proposed by this study can support comprehension and appropriate analysis of the uncertainty surrounding the climate change impact assessment, and make possible a better understanding of the water resources projection for future climate change.