• Title, Summary, Keyword: 벡터 공간 모델

Search Result 246, Processing Time 0.038 seconds

A Study on the Performance of Structured Document Retrieval Using Node Information (노드정보를 이용한 문서검색의 성능에 관한 연구)

  • Yoon, So-Young
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.1
    • /
    • pp.103-120
    • /
    • 2007
  • Node is the semantic unit and a part of structured document. Information retrieval from structured documents offers an opportunity to go subdivided below the document level in search of relevant information, making any element in an structured document a retrievable unit. The node-based document retrieval constitutes several similarity calculating methods and the extended node retrieval method using structure information. Retrieval performance is hardly influenced by the methods for determining document similarity The extended node method outperformed the others as a whole.

Efficient face tracking using perspective motion model in feature space (원근 움직임 모델을 이용한 특징 공간 상에서의 효율적인 얼굴 영역 추적)

  • 최송하;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.521-523
    • /
    • 1999
  • 본 논문에서는 입력 영상 열에서 얼굴 영역을 추출하고, 영역 내 특징점들의 움직임 벡터를 원근 움직임 모델에 정합하여 얼굴 영역을 추적하는 새로운 방법을 제안한다. 제안된 방법은 계층적 형판정합을 이용하여 얼굴 영역을 추출하고, 해당 영역에서 DoG 반응의 국부최대치를 찾아 특징점을 구한다. 그리고 최소제곱추정기법을 이용하여 각 특징점에서 얻어진 움직임 벡터를 원근 모델에 정합한다. 제안된 방법은 선별된 특징점에서 움직임 벡터를 계산함으로써 연산량을 줄일 수 있었고, 원근 움직임 모델을 이용함으로써 잡영에 강한 특성을 보인다.

  • PDF

A Semantic Text Model with Wikipedia-based Concept Space (위키피디어 기반 개념 공간을 가지는 시멘틱 텍스트 모델)

  • Kim, Han-Joon;Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.3
    • /
    • pp.107-123
    • /
    • 2014
  • Current text mining techniques suffer from the problem that the conventional text representation models cannot express the semantic or conceptual information for the textual documents written with natural languages. The conventional text models represent the textual documents as bag of words, which include vector space model, Boolean model, statistical model, and tensor space model. These models express documents only with the term literals for indexing and the frequency-based weights for their corresponding terms; that is, they ignore semantical information, sequential order information, and structural information of terms. Most of the text mining techniques have been developed assuming that the given documents are represented as 'bag-of-words' based text models. However, currently, confronting the big data era, a new paradigm of text representation model is required which can analyse huge amounts of textual documents more precisely. Our text model regards the 'concept' as an independent space equated with the 'term' and 'document' spaces used in the vector space model, and it expresses the relatedness among the three spaces. To develop the concept space, we use Wikipedia data, each of which defines a single concept. Consequently, a document collection is represented as a 3-order tensor with semantic information, and then the proposed model is called text cuboid model in our paper. Through experiments using the popular 20NewsGroup document corpus, we prove the superiority of the proposed text model in terms of document clustering and concept clustering.

The multi agent control heuristic using direction vector (방향 벡터를 이용한 다중에이전트 휴리스틱)

  • Kim Hyun;Lee SeungGwan;Chung TaeChoong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.525-528
    • /
    • 2004
  • 먹이추적문제(prey pursuit problem)는 가상 격자로 이루어진 공간 내에 다중의 에이전트를 이용하여 먹이를 포획하는 것이다. 에이전트들은 먹이를 포획하기 위해 $30{\times}30$으로 이루어진 격자공간 (gride)안에서 기존 제안된 지역 제어, 분산 제어, 강화학습을 이용한 분산 제어 전략들을 적용하여 먹이를 포획하는 전략을 구현하였다. 제한된 격자 공간은 현실세계를 표현하기에는 너무도 역부족이어서 본 논문에서는 제한된 격자공간이 아닌 현실 세계와 흡사한 무한 공간 환경을 표현하고자 하였다. 표현된 환경의 모델은 순환구조(circular)형 격자 공간이라는 새로운 실험 공간이며, 새로운 공간에 맞는 전략은 에이전트와 먹이와의 추적 관계를 방향 벡터를 고려한 모델로 구현하였다. 기존 실험과는 차별화 된 환경에서 에이전트들은 휴리스틱을 통한 학습을 할 수 있다는 가정과 먹이의 효율적 포획, 충돌문제 해결이라는 결과를 얻었다.

  • PDF

Experiments of Illuminant Estimation in the Dichromatic Reflecton Model (Dichromatic 반사 모델에서의 조명성분 추출 실험)

  • 박명은;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • /
    • pp.218-223
    • /
    • 2000
  • 영상에서 색상은 조명과 물체의 반사 특성에 의해 걸정되므로고 정확한 조명성분 추출을 통해 물체 고유의 색상을 복원할 수 있다. 물체 색상과 하이라이트 색상의 분포와 이들간의 관계를 잘 반영하여 모델링한 Dichromatic 반사 모델에서는, 3차원 RGB 공간에서의 하이라이트(highlight) 영역에 의한 클러스터 분포형상으로부터 표면반사벡터를 구해 이것을 조명벡터로 결정하였다. 그러나, 표면반사벡터의 방향은 물체색상의 영향을 받아 실제 조명벡터와 동일한 방향을 나타내지 못한다는 것을 실험을 통해 알 수 있었다. 실제적으로 하이라이트영역에 대한 클러스터는 물체 색상으로부터 조명색상에 근접한 방향으로 형성되며, 조명벡터로는 글러스터의 최대값으로 향하는 것을 취하는 것이 보다 정확하다는 특성이 있음을 확인하였다. 본 논문에서는 여러 가지 실험을 통해 이러한 특성이 타당함을 제시하고, 그래픽반사모델을 이용하여 하이라이트 색상에 대한 새로운 해석 방법을 제시한다.

  • PDF

Word Sense Disambiguation using Korean Word Space Model (한국어 단어 공간 모델을 이용한 단어 의미 중의성 해소)

  • Park, Yong-Min;Lee, Jae-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • Various Korean word sense disambiguation methods have been proposed using small scale of sense-tagged corpra and dictionary definitions to calculate entropy information, conditional probability, mutual information and etc. for each method. This paper proposes a method using Korean Word Space model which builds word vectors from a large scale of sense-tagged corpus and disambiguates word senses with the similarity calculation between the word vectors. Experiment with Sejong morph sense-tagged corpus showed 94% precision for 200 sentences(583 word types), which is much superior to the other known methods.

Efficient 3D Mesh Sequence Compression Using a Spatial Layer Decomposition (공간 계층 분해를 이용한 효율적인 3 차원 메쉬 시퀀스 압축)

  • Ahn, Jae-Kyun;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.14-15
    • /
    • 2013
  • 본 논문에서는 공간 계층 분해를 이용한 3 차원 메쉬 시퀀스 압축 기법을 제안한다. 제안하는 기법은 우선 각 점에 대한 시간적 궤적을 공분산 행렬로 표현하고, PCA(Principal component analysis)를 적용하여 시간 궤적에 대한 고유 벡터와 PCA 계수를 획득한다. 공간적인 예측을 통해 PCA 계수에 대한 벡터 차를 추출하고, 벡터 차와 그것에 대한 고유 벡터를 전송한다. 제안하는 방법은 PCA 계수 예측의 성능을 높이기 위해 점진적 압축에서 사용하는 공간 계층 분해 기법을 적용하여, 계수 예측에 효과적인 이웃 점을 지정하도록 한다. 또한, 이웃 점 개수를 사용자가 임의로 지정할 수 있도록 하여, 성능과 복잡도간의 트레이드 오프를 제어할 수 있도록 한다. 다양한 모델에 대한 실험 결과를 통해 제안하는 방법의 성능을 확인한다.

  • PDF

Word Sense Classification Using Support Vector Machines (지지벡터기계를 이용한 단어 의미 분류)

  • Park, Jun Hyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.563-568
    • /
    • 2016
  • The word sense disambiguation problem is to find the correct sense of an ambiguous word having multiple senses in a dictionary in a sentence. We regard this problem as a multi-class classification problem and classify the ambiguous word by using Support Vector Machines. Context words of the ambiguous word, which are extracted from Sejong sense tagged corpus, are represented to two kinds of vector space. One vector space is composed of context words vectors having binary weights. The other vector space has vectors where the context words are mapped by word embedding model. After experiments, we acquired accuracy of 87.0% with context word vectors and 86.0% with word embedding model.

3D-GIS Modeling for Path Finding in Indoor Spaces (내부공간에서의 경로탐색을 위한 3D-GIS 모델링)

  • Ryu Keun-Won;Jun Chul-Min;Park In-Hye;Kim Hye-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • /
    • pp.187-192
    • /
    • 2006
  • 도시의 과밀화로 인해 건물들은 고층화, 대형화되고 복잡한 형태를 이루고 있어 건물 이용자들에게 2차원의 정보뿐만 아니라 3차원 공간정보의 필요성이 증가하고 있으며 이를 해결하기 위해 3차원 GIS 모델의 활용이 요구되고 있다. 그러나 현재까지 연구되거나 응용되어 온 3차원 모델은 주로 건물 외부형태의 시각화를 위한 것으로 3차원 공간분석에 응용되기에는 한계가 존재해 왔다. 이에 본 연구에서는 3차원 모델을 공간분석에 적용하는 하나의 방안으로서 건물의 내부공간에서 경로탐색을 구현하기 위한 방법을 제시하였다. 이를 위해 건물 내부의 각 실들과 연결통로 및 기타 시설들을 각각 오브젝트로 분리하여 3차원으로 모델링하였다. 2차원 GIS데이터와 3차원 모델에 각각 벡터기반의 네트워크 모델을 생성하고 DB를 이용하여 두 모델을 연동함으로써 3차원 모델에서 네트워크기반의 경로분석과 탐지기능을 가능하게 하였다.

  • PDF

Improving the Performance of Information Retrieval System by using GPU Parallelism (GPU 병렬성을 이용한 정보 검색 시스템의 성능 개선)

  • Park, Il-Nam;Bae, Byunggurl;Im, Eun-Jin;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.83-84
    • /
    • 2011
  • 정보 검색 시스템에서 사용되고 있는 벡터 공간 모델은 벡터 유사도 계산 속도에 따라 전체 시스템의 성능에 많은 영향을 미친다. 본 논문에서는 문서 유사도 계산 성능을 향상시키기 위하여 GPU(Graphic Processing Unit)를 이용하는 CUDA프레임워크에서 병렬처리 연산을 구현하였으며, CPU(Central Processing Unit) 환경에서의 연산 속도와 비교했을 때 최대 15배의 성능 향상 효과가 있음을 확인하였다.

  • PDF