• Title, Summary, Keyword: 범주 표현 알고리즘

Search Result 15, Processing Time 0.071 seconds

A Study of Designing the Intelligent Information Retrieval System by Automatic Classification Algorithm (자동분류 알고리즘을 이용한 지능형 정보검색시스템 구축에 관한 연구)

  • Seo, Whee
    • Journal of Korean Library and Information Science Society
    • /
    • v.39 no.4
    • /
    • pp.283-304
    • /
    • 2008
  • This is to develop Intelligent Retrieval System which can automatically present early query's category terms(association terms connected with knowledge structure of relevant terminology) through learning function and it changes searching form automatically and runs it with association terms. For the reason, this theoretical study of Intelligent Automatic Indexing System abstracts expert's index term through learning and clustering algorism about automatic classification, text mining(categorization), and document category representation. It also demonstrates a good capacity in the aspects of expense, time, recall ratio, and precision ratio.

  • PDF

A Fuzzy Clustering Algorithm for Clustering Categorical Data (범주형 데이터의 분류를 위한 퍼지 군집화 기법)

  • 김대원;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.63-66
    • /
    • 2003
  • 본 논문에서는 범주형(categorical) 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 fuzzy k-modes 알고리즘은 군집 (cluster)의 중심을 단일값으로 표현한 반면, 제안하는 기법에서는 이를 퍼지값으로 정의한다. 이와 같은 퍼지 중심 표현기법을 도입함으로써 범주형 데이터의 분류시에 발생하는 불확실성을 최소화할 수 있다. 기존의 대표적인 방법들과의 비교실험으로 통해 제안한 방법의 성능을 검증하였다.

  • PDF

A Fuzzy Clustering Algorithm for Clustering Categorical Data (범주형 데이터의 분류를 위한 퍼지 군집화 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.661-666
    • /
    • 2003
  • In this paper, the conventional k-modes and fuzzy k-modes algorithms for clustering categorical data is extended by representing the clusters of categorical data with fuzzy centroids instead of the hard-type centroids used in the original algorithm. The hard-type centroids of the traditional algorithms had difficulties in dealing with ambiguous boundary data, which might be misclassified and lead to thelocal optima. Use of fuzzy centroids makes it possible to fully exploit the power of fuzzy sets in representing the uncertainty in the classification of categorical data. The distance measure between data and fuzzy centroids is more precise and effective than those of the k-modes and fuzzy k-modes. To test the proposed approach, the proposed algorithm and two conventional algorithms were used to cluster three categorical data sets. The proposed method was found to give markedly better clustering results.

Multidimensional scaling of categorical data using the partition method (분할법을 활용한 범주형자료의 다차원척도법)

  • Shin, Sang Min;Chun, Sun-Kyung;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.67-75
    • /
    • 2018
  • Multidimensional scaling (MDS) is an exploratory analysis of multivariate data to represent the dissimilarity among objects in the geometric low-dimensional space. However, a general MDS map only shows the information of objects without any information about variables. In this study, we used MDS based on the algorithm of Torgerson (Theory and Methods of Scaling, Wiley, 1958) to visualize some clusters of objects in categorical data. For this, we convert given data into a multiple indicator matrix. Additionally, we added the information of levels for each categorical variable on the MDS map by applying the partition method of Shin et al. (Korean Journal of Applied Statistics, 28, 1171-1180, 2015). Therefore, we can find information on the similarity among objects as well as find associations among categorical variables using the proposed MDS map.

Emotional States Recognition of Text Data Using Hidden Markov Models (HMM을 이용한 채팅 텍스트로부터의 화자 감정상태 분석)

  • 문현구;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.127-129
    • /
    • 2001
  • 입력된 문장을 분석하여 미리 정해진 범주에 따라 그 문장의 감정 상태의 천이를 출력해 주는 감정인식 시스템을 제안한다. Naive Bayes 알고리즘을 사용했던 이전 방법과 달리 새로 연구된 시스템은 Hidden Markov Model(HMM)을 사용한다. HMM은 특정 분포로 발생하는 현상에서 그 현상의 원인이 되는 상태의 천이를 찾아내는데 적합한 방법으로서, 하나의 문장에 여러 가지 감정이 표현된다는 가정 하에 감정인식에 관한 이상적인 알고리즘이라 할 수 있다. 본 논문에서는 HMM을 사용한 감정인식 시스템에 관한 개요를 설명하고 이전 버전에 비해 보다 향상된 실험결과를 보여준다.

  • PDF

The Study of the Financial Index Prediction Using the Equalized Multi-layer Arithmetic Neural Network (균등다층연산 신경망을 이용한 금융지표지수 예측에 관한 연구)

  • 김성곤;김환용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.113-123
    • /
    • 2003
  • Many researches on the application of neural networks for making financial index prediction have proven their advantages over statistical and other methods. In this paper, a neural network model is proposed for the Buying, Holding or Selling timing prediction in stocks by the price index of stocks by inputting the closing price and volume of dealing in stocks and the technical indexes(MACD, Psychological Line). This model has an equalized multi-layer arithmetic function as well as the time series prediction function of backpropagation neural network algorithm. In the case that the numbers of learning data are unbalanced among the three categories (Buying, Holding or Selling), the neural network with conventional method has the problem that it tries to improve only the prediction accuracy of the most dominant category. Therefore, this paper, after describing the structure, working and learning algorithm of the neural network, shows the equalized multi-layer arithmetic method controlling the numbers of learning data by using information about the importance of each category for improving prediction accuracy of other category. Experimental results show that the financial index prediction using the equalized multi-layer arithmetic neural network has much higher correctness rate than the other conventional models.

  • PDF

Learning Emotional States of Chatting Partners from Text Data (채팅 텍스트로부터의 회자 감정상태 학습)

  • 문현구;장벽탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.340-342
    • /
    • 2001
  • 현재 인터넷 환경에서 텍스트는 다루기 쉽고 부하가 적어 가장 많이 사용되는 통신 수단이다. 그러나 화상 채팅과는 달리 자신의 표정이나 체스춰를 전달할 수 있는 방법이 없기 때문에 표현상의 한계가 있다. 이 글은 일상 대화를 텍스트로 입력받아, naive Bayes 알고리즘을 사용해 미리 정의된 감정 범주, 즉 울기, 웃기, 화내기 등으로 분류해 주는 방법에 관해 다루고 있다. 채팅사이트에서 수집된 학습데이터는 사람에 의해 해당 감정 범주로 태깅되고, 이렇게 태깅된 데이터가 학습엔진에 의해 통계 정보로 구축되면, 실제 채팅사이트에서 감정인식 엔진은 입력된 데이터를 분석해 해당 감정으로 분류한다. 연령별로 5개의 그룹으로 나눈 대화방에서 각각 1000문장씩 테스트해본 결과 평균 91.6%의 정확도를 얻을 수 있었다.

  • PDF

Cell-based Classification of High-dimensional Large data for Data Mining Application (데이터 마이닝을 위한 대용량 고차원 데이터의 셀-기반 분류방법)

  • 진두석;장재우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.192-194
    • /
    • 2000
  • 최근 데이터 마이닝에서 대용량 데이터를 처리하는 응용이 많아짐에 따라, 클러스터링(Clustering) 및 분류(Classification)방법이 중요한 분야가 되고 있다. 특히 분류방법에 관한 기존 연구들은 단지 메모리 상주(memory-resident) 데이터에 대해 한정되며 고차원 데이터를 효율적으로 처리할 수 없다. 따라서 본 논문에서는 대용량 고차원 데이터를 효과적으로 처리할 수 있는 새로운 분류 알고리즘을 제안한다. 이는 데이터들을 차원 공간상의 셀(cell)로 표현함으로써 수치(numerical) 애트리뷰트와 범주(categorical) 애트리뷰트 모두 처리할 수 있는 알고리즘을 제안한다. 아울러, 실험결과를 통해 제안한 알고리즘이 데이터의 양,차원 그리고 속성에 관계없이 분류를 효과적으로 수행함을 보인다.

  • PDF

Text Classification based on a Feature Projection Technique with Robustness from Noisy Data (오류 데이타에 강한 자질 투영법 기반의 문서 범주화 기법)

  • 고영중;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.498-504
    • /
    • 2004
  • This paper presents a new text classifier based on a feature projection technique. In feature projections, training documents are represented as the projections on each feature. A classification process is based on individual feature projections. The final classification is determined by the sum from the individual classification of each feature. In our experiments, the proposed classifier showed high performance. Especially, it have fast execution speed and robustness with noisy data in comparison with k-NN and SVM, which are among the state-of-art text classifiers. Since the algorithm of the proposed classifier is very simple, its implementation and training process can be done very simply. Therefore, it can be a useful classifier in text classification tasks which need fast execution speed, robustness, and high performance.

Document Clustering based on Level-wise Stop-word Removing for an Efficient Document Searching (효율적인 문서검색을 위한 레벨별 불용어 제거에 기반한 문서 클러스터링)

  • Joo, Kil Hong;Lee, Won Suk
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.3
    • /
    • pp.67-80
    • /
    • 2008
  • Various document categorization methods have been studied to provide a user with an effective way of browsing a large scale of documents. They do compares set of documents into groups of semantically similar documents automatically. However, the automatic categorization method suffers from low accuracy. This thesis proposes a semi-automatic document categorization method based on the domains of documents. Each documents is belongs to its initial domain. All the documents in each domain are recursively clustered in a level-wise manner, so that the category tree of the documents can be founded. To find the clusters of documents, the stop-word of each document is removed on the document frequency of a word in the domain. For each cluster, its cluster keywords are extracted based on the common keywords among the documents, and are used as the category of the domain. Recursively, each cluster is regarded as a specified domain and the same procedure is repeated until it is terminated by a user. In each level of clustering, a user can adjust any incorrectly clustered documents to improve the accuracy of the document categorization.

  • PDF