• Title, Summary, Keyword: 배터리 상태 추정

Search Result 40, Processing Time 0.037 seconds

Online SOH algorithm using a drive current characteristic of electric vehicle (전기자동차 구동 전류 특성을 이용한 Online SOH 알고리즘)

  • Lee, Han-Sol;Choi, Gwang-Hyuck;Noh, Tae-Won;Kim, Nari;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.85-86
    • /
    • 2016
  • 본 논문은 내부 저항을 추정하여 배터리 노화 상태 (State of Health)를 판단하는 알고리즘을 제안한다. 내부 저항은 차량 구동 시 발생하는 전류 변화량과 그에 따른 전압강하 특성을 이용하여 추정되며, 정확도를 높이기 위해 차량의 주행 특성을 고려하여 추정 조건을 결정한다. 알고리즘의 정확도는 MATLAB 시뮬레이션을 통해 검증한다.

  • PDF

A LiPB SOH Determination Method based on Extended Kalman Filter using Direct Current Internal Resistance (DCIR을 이용한 EKF 기반의 LiPB SOH 판별 방법)

  • Lim, Dong-Jin;Cho, Yong-Ki;Jeong, Yong-Min;Ahn, Jung-Hoon;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.532-533
    • /
    • 2014
  • 본 논문은 LiPB의 SOH (State of Health)를 판별하는 방법중 배터리용량 (Ah) 및 저항 등가모델의 장 단점을 비교한다. 그리고 정확한 SOH 추정을 위해 DCIR (Direct Current Internal Resistance)을 사용한 판별 방법을 제안한다. 정확한 DCIR 값을 추정하기 위하여 EKF (Extended Kalman Filter)를 적용하고, MATLAB 시뮬레이션을 통해 DCIR 값을 확인한다. 또한, 실제 LiPB의 각 SOC (State of Charge) 상태마다 DCIR 값을 측정하고, 추정 값과 비교를 통해 정확도를 판단한다.

  • PDF

Intelligent Control Interface for Display Power Response to a User's Activity (사용자 활동 상태에 반응하는 지능형 디스플레이 전원 제어 인터페이스)

  • Baek, Jong-Hun;Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • As a result of the growth of mobile devices such as PDA and cellular phone, a user can utilize various digital contents everywhere and anytime. However, mobile devices have the limited resources and interaction mechanisms. This paper introduces the schema for a user activity estimation and its application in order to overcome the poor user interface and limited resource problems. We are able to supplement lacking the user interface of mobile devices by using the user activity estimation proposed in this paper, and its application is a intelligent control interface for the display power on or off which can effectively utility the battery of the mobile device.

Accurate State of Charge Estimation of LiFePO4 Battery Based on the Unscented Kalman Filter and the Particle Filter (언센티드 칼만 필터와 파티클 필터에 기반한 리튬 인산철 배터리의 정확한 충전 상태 추정)

  • Nguyen, Thanh-Tung;Awan, Mudassir Ibrahim;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.126-127
    • /
    • 2017
  • An accurate State Of Charge (SOC) estimation of battery is the most important technique for Electric Vehicles (EVs) and Energy Storage Systems (ESSs). In this paper a new integrated Unscented Kalman Filter-Particle Filter (UKF-PF) is employed to estimate the SOC of a $LiFePO_4$ battery cell and a significant improvement is obtained as compared to the other methods. The parameters of the battery is modeled by the second order Auto Regressive eXogenous (ARX) model and estimated by using Recursive Least Square (RLS) method to calculate value of each element in the model. The proposed algorithm is established by combining a parameter identification technique using RLS method with ARX model and an SOC estimation technique using UKF-PF.

  • PDF

State of Charge Estimation of Li-Ion Battery Based on CIM and OCV Using Extended Kalman Filter (전류적산법과 OCV 방법을 결합한 Li-Ion 배터리의 충전상태 추정)

  • Park, Joung-Ho;Cha, Wang-Cheol;Cho, Uk-Rae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.77-83
    • /
    • 2014
  • The Estimation of State of Charge(SOC) for batteries is an important aspect of a Battery Management System(BMS). A method for estimating the SOC is proposed in order to overcome the individual disadvantages of the current integral and Open Circuit Voltage(OCV) estimation methods by combining them using Extended Kalman filter(EKF). The non-linear characteristics of the Li-Ion RC battery model used in this study is also solved through EKF. The proposed method is simulated in a Matlab environment with a Li-Ion Kokam battery (3.7V, 1,500mAh). Results showed that there is an improvement in the estimation error when using the proposed model compared to the conventional current integral method.

SOC Estimation Algorithm for the Lithium-Ion Battery by Using a Linear State Observer (선형 상태 관측기를 이용한 리튬이온 배터리의 SOC 추정 알고리즘)

  • Tran, Ngoc-Tham;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.60-61
    • /
    • 2014
  • Lithium-Ion batteries have become the best tradeoff between energy, power density and cost of the energy storage system in many portable high electric power applications. In order to manage the battery efficiently State of Charge (SOC) of the battery needs to be estimated accurately. In this paper a model-based approach to estimate the SOC of the Lithium-Ion battery based on the estimation of the battery impedance is proposed. The validity and feasibility of the proposed algorithm is verified by the experimental results.

  • PDF

The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer (PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정)

  • Lee, Junwon;Jo, Jongmin;Kim, Sungsoo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.

EV Battery State Estimation using Real-time Driving Data from Various Routes (전기차 주행 데이터에 의한 경로별 배터리 상태 추정)

  • Yang, Seungmoo;Kim, Dong-Wan;Kim, Eel-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.139-146
    • /
    • 2019
  • As the number of electric vehicles (EVs) in Jejudo Island increases, the secondary use of EV batteries is becoming increasingly mandatory not only in reducing greenhouse gas emissions but also in promoting resource conservation. For the secondary use of EV batteries, their capacity and performance at the end of automotive service should be evaluated properly. In this study, the battery state information from the on-board diagnostics or OBD2 port was acquired in real time while driving three distinct routes in Jejudo Island, and then the battery operating characteristics were assessed with the driving routes. The route with higher altitude led to higher current output, i.e., higher C-rate, which would reportedly deteriorate state of health (SOH) faster. In addition, the SOH obtained from the battery management system (BMS) of a 2017 Kia Soul EV with a mileage of 55,000 km was 100.2%, which was unexpectedly high. This finding was confirmed by the SOH estimation based on the ratio of the current integral to the change in state of charge. The SOH larger than 100% can be attributed to the rated capacity that was lower than the nominal capacity in EV application. Therefore, considering the driving environment and understanding the SOH estimation process will be beneficial and necessary in evaluating the capacity and performance of retired batteries for post-vehicle applications.

Random Access Phase Optimal Allocation Method Through Pattern Correction in WBAN (WBAN 환경에서 패턴 보정을 통한 임의접근구간 최적 할당 방법)

  • Lee, ChangHo;Kim, Kanghee;Kim, JiWon;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.92-105
    • /
    • 2015
  • WBAN (Wireless Body Area Network) is a network which is to consistently monitor body signals with implanted or attached sensor nodes. Especially, nodes that are used in medical services have to operate with low power consumption since they are hard to replace, and have to guarantee high data rate and low transmission delay for consistent signal monitor. In this paper, we propose an algorithm that aims to reduce transmission delay and power consumption, and guarantees stable throughput, by assuming the number of active nodes, and followed by dynamically adjusting the random access period and transmission possibilities in a superframe. The assumed number of active nodes may be incorrect since it only relies on the channel status of a previous superframe. Therefore, we assume the number of active nodes and define a pattern. And revise the number of the active nodes with the defined pattern. To evaluate the performance of the proposed algorithm, we have implemented a WBAN environment with the MATLAB. The simulation results show that the proposed algorithm provides better throughput, low power consumption, and low transmission delay when compared to the slotted ALOHA of the IEEE 802.15.6.

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.