• 제목, 요약, 키워드: 배터리 상태 추정

검색결과 40건 처리시간 0.044초

리튬이온 배터리 상태 추정을 위한 근사모델링 방법과 그 성능 분석을 통한 수명 예측에 대한 연구 (Study on Analysis of Performance to Surrogate modeling Method for Battery State Estimation)

  • 강덕훈;이평연;장신우;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.206-207
    • /
    • 2019
  • 리튬이온 배터리의 상태를 모니터링 하는 방법에 있어서, 대표적으로 배터리의 충전 상태(SOC)와 배터리의 건강 상태(SOH)를 추정하여 상태 지표로 사용된다. 본 연구에서는 리튬 이온 배터리의 상태 지표를 위한 용량 정보의 추정을 데이터 기반의 근사 모델을 이용하여 수행하였다. 다양한 근사 모델링 방법을 적용하여 추정되는 용량 정보를 비교하고, 모델링 방법에 따른 용량 추정 성능을 확인하였다. 또한, 이를 바탕으로 리튬이온 배터리의 용량을 예측하고 예측 성능을 분석하였다. 본 연구를 통하여 근사모델을 이용하는 경우, 리튬이온 배터리의 용량 추정은 물론 예측을 수행하는 방법으로서의 활용 가능성을 확인하였으며, 또한 제안하는 방법을 이용하여 보유하고 있는 모니터링 데이터를 활용하여 리튬이온 배터리의 성능을 평가하는데 있어 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF

이중 확장 칼만 필터를 활용한 리튬이온 배터리의 C-rate별 노화에 따른 SOH 추정 경향성 분석 연구 (Study on analysis of SOH estimation tendency according to C-rate of Li-ion battery using DEKF)

  • 김건우;박진형;김민오;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.194-195
    • /
    • 2019
  • 배터리는 사용 기간과 회수가 증가함에 따라 수명이 점차 감소한다. SOH(State-Of-Health)는 배터리의 초기 상태와 현재 상태를 비교하여 배터리의 수명 상태를 나타내는 지표이며, 이는 배터리를 사용함에 있어서배터리의 현재 충전상태를 나타내는 SOC(State-Of-Charge)와 함께 정확한 추정을 필요로 한다. 본 논문에서는 리튬이온 배터리를 C-rate에 따라 노화시키며 각 C-rate별 SOH 추정 경향성을 분석하였다. 배터리의 SOC와 SOH는 확장 칼만 필터를 병렬적으로 사용하는 이중 확장 칼만 필터를 활용하여 추정한다. 배터리의 노화실험은 완전충전과 완전충전을 반복하는 전류 프로파일을 인가하였으며, 실험은 상온(25℃)에서 실행하였다.

  • PDF

이동 평균 필터와 적응 칼만 필터를 이용한 노이즈 제어 및 SOC추정 성능 향상 연구 (Study on improvement of noise control and SOC estimation using moving average filter and adaptive kalman filter)

  • 김건우;박진형;이성준;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.198-200
    • /
    • 2019
  • 배터리의 상태를 추정하기 위해 전압과 전류 데이터는 사용자가 센서를 통해 얻을 수 있는 정보이며, 이때 노이즈 성분이 포함된 전압 및 전류 데이터는 배터리의 상태 추정을 할 때 정확도를 크게 감소시킬 수 있다. 기존의 확장 칼만필터(EKF, Extended Kalman Filter)를 사용하여 노이즈 성분이 포함된 데이터를 통해 배터리의 상태를 추정했을 때는 노이즈의 영향으로 인해 추정 정확도가 떨어진다. 본 논문은 적응형 칼만 필터(AKF, Adaptive Kalman Filter)를 사용하여 노이즈 분산값을 업데이트 해줌으로써 SOC추정 성능을 향상시켰다. 실험 및 배터리의 모델링은 21700 NMC 고용량 배터리를 사용하였으며, 배터리의 전압에 임의의 노이즈 성분을 추가하여 배터리의 SOC를 추정 정확도를 검증 하였다.

  • PDF

단일 확장 칼만 필터를 이용한 리튬배터리의 SOC 및 SOH 추정법 (SOC and SOH Estimation Method for the Lithium Batteries Using Single Extended Kalman Filter)

  • 고영휘;최우진
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.79-81
    • /
    • 2019
  • 전기자동차(EV)뿐만 아니라 ESS(Energy Storage System) 등의 사용량이 증가하면서 리튬이온배터리의 중요성은 점점 커지고 있다. 리튬 이온 배터리의 정확한 상태를 추정하는 것은 배터리의 안전하고 신뢰성 있는 작동을 위해 매우 중요하다. 본 논문에서는 AEKF(Adaptive Extended Kalman Filter)를 이용한 배터리 파라미터와 충전상태(SOC, State of Charge)를 추정하고, 이를 활용하여 배터리의 건강상태(SOH, State of Health)를 추정하는 간단한 알고리즘을 제시한다. AEKF에 파라미터 값을 적용하여 SOC를 추정하고, 추정된 SOC값과 전류 적산을 이용하여 SOH를 추정한다. SOC 오차에 따른 SOH 추정 값의 편차는 SOC 연산 간격을 늘리고 가중치 필터를 적용하여 최소화시킴으로써 결과의 정확성을 향상했다. 다양한 자동차의 표준 주행 패턴을 적용한 실험을 통해 제안된 방법을 이용하여 얻어진 SOH 추정 결과는 RMSE(Root Mean Square Error) 1.428% 이내임을 검증하였다.

  • PDF

이중 확장 칼만 필터 기반 고정밀 SOC/용량 추정을 통한 폐배터리 충/방전 최대 출력 추정 알고리즘 연구 (A Study on Estimation Algorithm of Maximum Charge/Discharge Power Based on High-accuracy SOC/Capacity Estimation through DEKF)

  • 박진형;김건우;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.204-206
    • /
    • 2019
  • 본 논문은 이중 확장 칼만 필터를 통한 SOC (State of charge) 및 용량 추정과 배터리 모델 파라미터를 이용한 폐배터리의 최대 출력을 추정하는 방법을 연구 및 제안한다. 배터리의 단순 전압 측정을 통해 상태를 진단할 경우, 부하 조건에 따라 급격한 전압 상승 및 강하로 인해 정밀한 안전 진단 및 운용에 어려움이 따르지만, 폐배터리는 일반 배터리에 비해 전압 변동율이 크기 때문에 상태 진단에 큰 어려움이 존재한다. 따라서 본 논문에서는 폐배터리의 정밀한 안전진단을 하기 위해 SOC 영역 및 충/방전에 따른 최대 출력을 계산하여 사전에 배터리의 상태를 진단할 수 있는 알고리즘을 제안한다. 또한, 배터리의 노화도에 따른 최대 출력을 실험 및 시뮬레이션을 통해 결과를 제시하여 유효한 방식임을 검증한다.

  • PDF

배터리의 노화 상태를 고려한 배터리 SOC 추정 (Battery State of Charge Estimation Considering the Battery Aging)

  • 이승호;박민기
    • 전기전자학회논문지
    • /
    • v.18 no.3
    • /
    • pp.298-304
    • /
    • 2014
  • 배터리를 사용하고 있는 시스템에서 배터리의 잔존 용량에 대한 정보는 매우 중요하며, 따라서 정확한 SOC(State of Charge)의 추정이 필요하다. 배터리는 노화됨에 따라 전체 사용 가능 용량이 줄어들고 성능이 떨어지는데 이러한 노화의 영향을 고려하지 않는 배터리의 SOC 추정 방법은 추정의 정확도가 떨어지는 단점이 있다. 따라서 본 논문에서는 배터리의 노화 상태를 고려하여 배터리의 SOC를 추정하는 새로운 방법을 제안한다. 제안한 방법에서는 배터리의 전압-SOC 특성 곡선을 Boltzmann 방정식을 사용하여 모델링하고 노화 지표를 정의하며, 노화 지표를 Boltzmann 방정식 모델과 결합하여 SOC를 추정한다. 따라서 제안한 방법은 배터리의 노화 상태를 SOC 추정에 반영하여 노화된 배터리에 대한 정확한 SOC 추정이 가능하다. 또한 새 배터리와 1년 사용한 배터리에 대한 실험과 시뮬레이션을 통하여 제안한 방법의 유효성을 확인한다.

확장칼만필터 기반 주파수 조정용 ESS의 SOC 추정 연구 (SOC estimation of ESS for frequency regulation based on extended kalman filter)

  • 권순종;최진혁;임지훈;이성은;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.201-203
    • /
    • 2019
  • ESS의 데이터에 노이즈가 발생하였을 때 배터리의 상태를 정확하게 추정하는 것은 어려운 부분이며, 부정확한 배터리 상태 추정은 시스템의 안전성 및 신뢰성을 하락시킬 수 있다. 실제 사용되는 시스템의 대부분의 데이터에는 노이즈가 발생하며, 이러한 노이즈를 고려하여 배터리의 상태를 정확하게 파악하는 연구는 매우 중요하다. 본 논문에서는 주파수 조정 용도로 ESS가 사용되었을 때 배터리의 운전 패턴을 생성하고, 입력 데이터에 심각한 노이즈가 발생하였을 때 EKF 알고리즘을 사용하여 배터리의 상태를 정확하게 추정하는 것을 보여준다.

  • PDF

확장 칼만 필터를 이용한 배터리 모니터링 시스템 개발 (Development of Battery Monitoring System Using the Extended Kalman Filter)

  • 조성우;정순규;김현탁
    • 한국융합학회논문지
    • /
    • v.11 no.6
    • /
    • pp.7-14
    • /
    • 2020
  • 본 논문에서는 확장 칼만 필터를 이용한 SOC 추정이 가능한 배터리 모니터링 시스템을 개발하였다. 배터리의 충·방전 상태를 정확하게 추정하기 위해 배터리 셀을 테브닌 모델로 모형화하고, 모델에 맞는 파라미터를 추출하였다. 이를 이용하여 확장 칼만 필터 알고리즘을 이용한 SOC 추정이 가능한 배터리 모니터링 디바이스를 제작하였으며, 다중 배터리 모니터링 디바이스 제어 및 배터리 상태 측정이 가능한 모니터링 서버를 제작하였다. 또한, 관리자가 실시간으로 상태를 확인하며 배터리 모니터링 디바이스 제어가 가능한 웹 서비스를 제작하였다. 특히, 배터리 SOC를 각각의 배터리 모니터링 디바이스에서 추정하고, 최종 결과만 모니터링 서버로 전달함으로써 서버의 계산량을 줄일 수 있다.

PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정 (The State of Charge Estimation for Lithium-Polymer Battery using PI Observer)

  • 이준원;신규범;차한주
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.58-59
    • /
    • 2014
  • 본 논문에서는 비례-적분(PI) 제어의 상태관측기를 구성하여 리튬폴리머 배터리의 충전량(SOC)을 추정하는 기법에 대해 설계한 뒤 실험을 통하여 검증하였다. 리튬폴리머 배터리는 1차 R-C 등가모델로 단순화하여 표현하였고, PI상태관측기를 Matlab/Simulink에서 설계하였다. 상온($25^{\circ}C$)에서 양방향 DC-DC 컨버터를 이용하여 리튬폴리머 배터리에 FTP-72 충 방전 사이클의 전류패턴을 인가한 뒤 SOC 추정기법을 검증하였다. PI상태관측기는 임의의 초기 SOC 상태에서도 오차율 2%이내로 SOC를 추정하여 모델링 에러나 외란에도 강인한 특성이 있는 것을 확인하였다.

  • PDF

베이지안 회귀분석을 이용한 리튬이온 배터리의 SOH 추정 방법 연구 (A study on SOH estimation of Lithium-ion battery based on Bayesian Regression.)

  • 박성윤;김종훈;박성백;김영미
    • 전력전자학회:학술대회논문집
    • /
    • /
    • pp.53-55
    • /
    • 2019
  • 리튬 이온 배터리가 소형 모바일 기기, 전기 자동차, 에너지 저장장치 등에 상용화됨에 따라서 이의 충전 상태(SOC) 추정 및 셀, 모듈의 건전성(SOH)의 예측이 배터리 사용 기기의 관리 지표로 사용되고 있다. 리튬 이온 배터리는 여러 차례의 방전으로 노화되어 기기의 요구 부하를 공급가능한지 지표로 평가되어야 한다. 정확한 SOH 추정을 위해 리튬 이온 배터리의 방전 용량 실험이 주기적으로 진행되어야 하며, 이를 통해 오프라인 기반의 SOH 추정이 가능해진다. 본 논문에서는 베이지안 회귀분석 방법을 이용하여 오프라인 SOH 추정을 진행하기 위해 방전 용량을 추정하였으며, 고출력 배터리인 18650 25R셀을 이용하여 방전 용량 추정 결과 방전 전류 1 C-rate에서 1%, 2 C-rate에서 2%의 추정 오차율을 나타냈다.

  • PDF