• Title, Summary, Keyword: 딥러닝

Search Result 1,236, Processing Time 0.036 seconds

딥러닝 기반 얼굴인식 모델에 대한 변조 영역 제한 기만공격

  • Ryu, Gwonsang;Park, Hosung;Choi, Daeseon
    • Review of KIISC
    • /
    • v.29 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • 최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.

  • PDF

딥러닝 기반 얼굴 검출, 랜드마크 검출 및 얼굴 인식 기술 연구 동향

  • Hwang, Won-Jun
    • Broadcasting and Media Magazine
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2017
  • 본 논문에서는 최근 각광받고 있는 Convolutional Neural Network(CNN)과 같은 딥러닝 기반의 얼굴 인식 연구 동향을 살펴 보고자 한다. 얼굴 인식은 입력 영상이 들어왔을 때 자동으로 누구인지 알아내는 알고리즘으로 크게 얼굴 검출, 얼굴 랜드마크 검출 및 얼굴 특징 추출로 나누어진다. 본 논문에서는 얼굴 검출, 랜드마크 검출 및 얼굴 특징 추출에 특화된 딥러닝 알고리즘을 하나씩 살펴보고 이들이 어떻게 발전해 왔는지를 확인하고자 한다. 특히, 딥러닝 기반 얼굴 인식 알고리즘들은 딥러닝 기반 물체 인식의 발전 방향과 유사하게 진행되어 오다가 최근에는 얼굴 인식에 특화된 딥러닝 아키텍처 형태로 발전하고 있다. 어떤 방향이 얼굴 인식에 더 도움이 될지에 대해서도 확인하고 실제로 어떤 문제를 해결하고 있는지 확인하고자 한다.

Application of Artificial Intelligence and Deep Learning Technique in Water Resources (인공지능 및 딥러닝 기법의 수자원 분야 적용 현황)

  • Hwang, Seok Hwan;Yoon, Jungsoo;Kang, Narae;Noh, Huiseong;Oh, Byunghwa;Lee, Jungha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.28-28
    • /
    • 2018
  • 본 연구에서는 최근 급격히 발달하고 있는 인공지능 및 딥러닝 기술에 대한 소개와 수문기상을 포함한 수자원 분야에의 적용사례를 검토하였다. 본 연구의 목적은 우리 삶의 일부가 되어 가고 있는 인공지능 및 딥러닝 기술을 이해하고 보다 실효적인 측면에서 수자원 분야에 적용 활용하기 위한 연구 가이드라인을 제시하기 위함이다. 이를 위해 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수자원 분야에서 이러한 기술이 요구되는 분야와 신기술(emerging techniques)을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다. 이를 통해 인공지능 및 딥러닝 기술 적용의 장점과 한계를 고찰하고 향후 집중 연구가 필요한 기술을 제시하였다.

  • PDF

Comparison and Analysis of Deep Learning Framework (딥러닝 프레임워크 비교 및 분석)

  • Kim, Dong-Wook;Kim, Sesong;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.949-950
    • /
    • 2017
  • 딥러닝(Deep Learning)을 효과적으로 연구하고 개발할 수 있도록 도와주는 다양한 딥러닝 프레임워크(Deep Learning Framework)가 있다. 딥러닝 프레임워크는 현재 100 가지도 넘는 종류가 있다. 그렇기 때문에 개발의 목적에 가장 적합한 딥러닝 프레임워크를 선택하는 것은 쉽지 않다. 본고에서는 5가지 대표적인 딥러닝 프레임워크에 대해서 각각의 특징을 분석하고 비교한다. 이를 통하여 딥러닝을 개발하기 전에 개발 목적에 적합한 프레임워크를 선택할 수 있는 간단한 안목을 제시한다.

Trends on Distributed Frameworks for Deep Learning (딥러닝 분산처리 기술동향)

  • Ahn, S.Y.;Park, Y.M.;Lim, E.J.;Choi, W.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.3
    • /
    • pp.131-141
    • /
    • 2016
  • 최근 알파고를 통해 인공지능 기술이 전 세계인의 이목을 집중시켰던 반면, 인공지능 연구자들은 인공지능 부활에 결정적 역할을 한 딥러닝 기술에 주목하고 있다. 딥러닝은 다계층 인공신경망 기반의 기계학습 기술로서 최근 컴퓨터 비전, 음성인식, 자연어 처리 분야에서 인식 성능을 높이는 데 중요한 역할을 하고 있다. 딥러닝 기술을 이용하여 기계가 수천만장의 이미지를 학습하여 객체를 인식하게 하고, 수천 시간의 음성 데이터를 학습하여 사람의 말을 알아듣게 처리하는 데에는 다수의 고성능 컴퓨터가 필요하다. 따라서 딥러닝에는 다수의 컴퓨터를 효율적으로 이용하기 위한 분산처리 기술이 필수적이며 관련 연구들이 활발히 진행되고 있다. 이에 본고는 다중 컴퓨터 노드들에서 딥러닝 모델을 분산처리할 수 있는 기존의 프레임워크들을 비교 분석하고 딥러닝 분산처리 기술에 대한 발전 방향을 전망한다.

  • PDF

An Android App Development - 'NoonchiCoaching_DeepLearning' has function of recommendation based on Deep Learning (딥러닝 예측 알고리즘 기반의 맞춤형 추천 모바일 앱 '눈치코칭_여행딥러닝' 개발)

  • Lee, Jong-Min;Kwon, Young-Jun;Kim, Yeoul;Kim, KyeongSeok;Jang, Jae Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.498-503
    • /
    • 2018
  • 본 논문은 한국관광공사에서 제공하는 Tour API 3.0 Open API에서 제공하는 데이터를 바탕으로 한다. Google에서 제공해 주는 TensorFlow를 통해서 인공 신경망 딥러닝 알고리즘과 가중치 알고리즘을 통해서 사용자 기호에 맞춰 정보를 추천해 주는 어플리케이션 '눈치코칭_여행딥러닝'의 설계 및 구현에 대하여 서술한다. 현재 순위알고리즘은 평균적으로 40%, 딥러닝 모델은 60%정확도를 보여, 딥러닝이 보다 좋은 성능을 보였다.

  • PDF

Deep Learning Structure Suitable for Embedded System for Flame Detection (불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2019
  • In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.

Development of Technique in Super Resolution domain that eliminates unnecessary Correlation information between Pixels & Channels. (픽셀, 채널간 불필요한 상호연관 정보를 제거하는 초해상화 딥러닝 기법)

  • Kang, Jung-Heum;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.656-659
    • /
    • 2020
  • 초해상화 딥러닝 기법은 학습 시 수렴하기까지 최소 수백 번의 에폭을 필요로 하며 오랜 시간이 걸린다. 최근, 영상 인식용 딥러닝 모델에서는 학습 수렴 속도를 향상시키기 위해 픽셀, 채널간 불필요한 상호연관 정보를 제거하는 Deconvolution 기술이 제안되었다. 본 논문에서는 최초로 Deconvolution 기술을 초해상화 딥러닝 방법에 적용하여 학습 수렴 속도 증가를 시도했다. 영상 인식 딥러닝 기법과 다르게 초해상화 딥러닝 기법은 이미지 특성 추출 부분과 이미지 복원 부분의 정보를 보존하는 것이 중요하기 때문에, EDSR을 Baseline 모델로 사용하여 양쪽 끝의 레이어는 기존의 Convolution 연산을 그대로 유지하고, 중간 레이어의 ResBlock 내의 Convolution 연산만 Deconvolution 연산으로 바꿔서 구성하였다. 초해상화 벤치마크 데이터셋을 사용한 실험 결과, 수렴속도가 빨라지지 않는 결과를 도출했다. 본 논문에서는 Deconvolution 기술이 Baseline 모델의 성능을 개선하지 못하는 이유를 초해상화 분야에서 기본적으로 적용되는 Residual Learning 기법 때문으로 분석했다.

  • PDF

A Study on Using Deep learning for Event Classification Based on Audio and Radar (오디오와 레이더를 결합한 답러닝 환경 분류 연구)

  • Kim, Tae-Ho;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.344-345
    • /
    • 2018
  • 본 논문에서는 오디오와 레이더 기반의 딥러닝을 활용한 환경 분류 기술을 제안한다. 제안된 환경 분류 기술은 오디오를 이용한 환경 분류 딥러닝 모델과 레이더를 이용한 딥러닝 모델을 앙상블로 결합하여 환경을 분류한다. 특히, 오디오와 레이더 각 성능을 높이기 위해 별도의 모델이 제안된 딥러닝 환경분류 기법은 실내 환경 5 가지를 분류 하였으며, 오디오 또는 레이더 단일 데이터를 활용한 환경 분류에 비해 우수한 성능을 보였다.