Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.277-280
/
2003
현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 다라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내어 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려한다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.307-314
/
2000
정보기술이 발달하면서 자료의 흔적들이 체계화된 데이터베이스에 저장이 되고, 더불어 데이터베이스의 규모는 점점 커지고 있다. 데이터 마이닝은 이런 방대한 자료의 분석을 통해, 그 속에 숨어있는 의미를 찾는 과점이라고 될 수 있다. 본 논문에서는 대우정보시스템(주)서 개발된 사용자지향 데이터 마이닝 도구인 XM-Tool/Miner의 개발을 대상으로 하고 있다. 개발된 XM-Tool/Miner은 문제 중심적 마이닝 도구를 목표로 하였으며, 대표적인 마이닝 알고리즘을 적용하였고, 또한 사용의 편이성에 초점을 맞추었다. 더 나아가 데이터 마이닝 기법뿐만 아니라 데이터의 샘플링과 성능향상을 통하여 방대한 데이터로부터 다양한 지식탐사가 가능해지고, 발견된 규칙 또는 지식의 유용성 측정을 통하여 업무 분야의 특성에 따라 효과적으로 반영되며 의사 결정 및 CRM마케팅, 동향분석 및 예측 등에 유용한 정보를 추출하는 도구로 사용할 수 있을 것이다.
Park, Sun;Park, Sang-Ho;Ahn, Chan-Min;Lee, Youn-Seok;Lee, Ju-Hong
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.70-72
/
2004
SIMS는 공간 정보 관리 환경을 지원하기 위한 통합 관리 시스템으로서 다양한 공간 및 비공간 자료를 관리하고 여러 응용작업을 지원한다. 본 논문에서는 기존의 공간 데이터 마이닝 질의 언어가 처리하는 공간자료에 한정되지 않고, 자동 데이터 수집, 인공위성 측위 서비스, 원격탐사, GPS, 모바일 컴퓨팅 등의 다양한 자료라 시공간(Spatio-Temporal) 자료로부터 유용한 정보를 발견 할 수 있도록 SIMS를 기반으로 한 공간 데이터 마이닝 전용 시스템을 지원하는 공간 데이터 마이닝 질의 언어를 설계하였다.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.983-986
/
2005
최근 들어서 데이터 마이닝은 마케팅, 시장 분석, 사업전략 및 도시계획 수립 등 다양한 분야에서 폭넓게 활용되고 있으며, 새로운 분야로 그 활용 영역을 넓혀가고 있다. 하지만 데이터 마이닝은 그 과정에서 데이터 소유자들의 프라이버시가 침해될 수 있는 문제를 내포하고 있으며, 최근에는 이러한 문제를 해결하고자 하는 노력들이 나타나고 있다. 본 논문에서는 데이터 마이닝에서 이러한 문제를 해결하기 위한 프라이버시 보호 기술들에 대해서 살펴보고 각 방법의 특징에 대해서 기술한다. 특히, 안전한 다자간 계산(Secure multiparty computation)에 기반한 암호학적 프라이버시 보호 기술과 그 활용 가능성에 대해서도 기술한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.63-65
/
1998
사회 전 분야에서 데이터가 폭발적으로 증가함에 따라 데이터를 이해하고 분석하는 새로운 자동적이고 지능적인 데이터 분석 도구와 기술이 필요하게 되었다. KDD(Knowledge Discovery in Databases)는 이러한 필요로부터 데이터에서 유용하고 이해 가능한 지식을 추출하는 연구이다. 데이터 마이닝(Data Mining)은 KDD에서 가장 중요한 단계로 데이터로부터 지식을 추출하는 단계이다. 데이터 마이닝에서 생성된 지식은 좋은 분류율을 가져야하고 이해하기 쉬워야한다. 본 논문에서는 퍼지 결정트리(FDT : Fuzzy Decision Tree)에 기반한 효율적인 데이터 마이닝 알고리즘을 제안한다. FDT의 각 링크는 속성(attribute) 값을 갖는 퍼지 집합이며, EDT의 각 경로는 퍼지 규칙을 생성한다. 제안된 알고리즘은 ID3의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법으로 히스토그램에 이루어진다. 마지막으로 제안된 방법의 타당성을 검증하기 위해 표준적인 패턴 분류 벤치마크 데이터에 대한 실험 결과를 보인다.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.792-795
/
2002
현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화 시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근 횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 따라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 LONGEPRO 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내여 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려 한다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11c
/
pp.1709-1712
/
2002
지식 탐사 연구의 핵심이 되어온 데이터 마이닝은 축적 데이터로부터 쉽게 추출되지 않는 데이터 상호관계나 일정 패턴과 같은 유용한 내재 정보 추출을 주된 목적으로 수행된다. 그러나, 데이터 마이닝은 대용량의 데이터 처리로 인해 빈번한 메모리 공간 제약과 처리 속도 저하 등의 한계성을 드러낸다. 이를 극복하기 위해 많은 마이닝 알고리즘 개발과 기존 알고리즘 개선 방법이 제시되어 왔으나 여전히 궁극적인 해결방안은 대두되지 않고 있다. 따라서, 만약 데이터 전처리 과정을 통해 마이닝 목적에 적합한 부분 데이터집합 추출 및 가공이 선행된다면 보다 효율적인 데이터 마이닝 작업을 유도할 수 있을 것이다. 본 논문은 효과적 데이터 전처리를 위한 필수 기본 연산 기능들을 주어진 데이터집합의 트랜잭션 및 데이터 특성에 기초하여 관계형 대수 형태로 의미를 정립하고, 적용 사례에 의한 상세 설명 및 실제 구현된 온라인 데이터 전처리 시스템을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.751-752
/
2009
컴퓨터와 통신의 급속한 성장은 방대한 양의 정보를 서로 공유하는 정보화 시대를 출현 시켰고 이러한 많은 양의 다양한 정보로부터 유용한 정보를 얻어 내는 데이터 마이닝이라는 기법이 도입되었다. 데이터 마이닝 기법은 사회 모든 분야에 걸쳐서 사용되고 있으며 이러한 기법으로 산출된 새로운 정보는 각 분야의 의사결정을 하는데 있어서 중요한 요소로 자리 잡고 있다. 본 논문에서는 데이터 마이닝을 통하여 여가 생활의 하나인 데이트를 보다 의미 있는 시간으로 만들기 위한 개인별 맞춤형 데이트 코스 추천 서비스를 제안하고자 한다. 이를 통하여 개개인의 정보를 얻기 위한 시간과 노력을 절약하고 개인의 취향과 환경적인 요소를 고려한 특화된 서비스를 제공한다.
Proceedings of the Korea Information Processing Society Conference
/
2007.11a
/
pp.247-249
/
2007
데이터 마이닝은 데이터 속에 숨겨져 있는 의미 있는 패턴을 찾아내는 것이다. 이러한 패턴들을 찾아내는 것은 데이터 마이닝에서 중요한 부분을 차지한다. 그러나 기존의 데이터 마이닝 방법들에 사용되는 데이터는 시간의 흐름에 데이터가 변하지 않는다는 특징을 가지고 있다. 시간의 흐름에 따라 변화하는 데이터의 특성을 고려해볼 때 변하지 않는 데이터에서 패턴을 찾아내는 것은 의미가 없는 일이다. 따라서 실시간으로 변하는 데이터의 특성을 고려하고 더불어 적합한 실시간 침입 탐지 방법이 필요하다. 따라서, 본 연구에서는 시간의 흐름에 따라 변하는 데이터에서 규칙을 발견하여 규칙 Set 을 생성하는 실시간 데이터 마이닝 기법을 이용하여 시간의 흐름에 따라 변하는 데이터에 대한 침입을 감시하기 위해 실시간 침입 탐지 시스템에 적용함으로써 보다 효율적으로 침입을 탐지하기 위한 방법을 제시한다.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
2008.11a
/
pp.686-689
/
2008
In the past decade, various data mining techniques have been used in construction engineering as a means to make informed decisions through the aid of useful knowledge discovered from historical data. Researchers in the construction domain are often confronted with a challenge to derive a meaningful conclusion with a limited sample of data. However, when the data size is small, the proposed results are often illogical. Even if the derived results are technically flawless, sometimes it is difficult to reproduce these results by using the same analysis method when a different set of data is used. This paper reviews some problems that stem from limited data size, and discusses several recommendations for dealing with these problems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.