• Title/Summary/Keyword: 데이터 마이닝

Search Result 1,007, Processing Time 0.183 seconds

Query Optimization Infrastructure in Spatial Data Mining (공간 데이터 마이닝에서의 질의 처리 최적화 전략)

  • 김충석;이현창;김경창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7A
    • /
    • pp.1200-1211
    • /
    • 2001
  • 최근 각광을 받고 있는 데이터 마이닝 분야에서 데이터 마이닝 툴과 시스템의 등장으로 상호적이고 사용하기 쉬운 GUI 환경의 강력한 데이터 마이닝 질의 언어가 필요하게 되었다. 공간 데이터 마이닝은 공간 데이터에서 유용한 지식을 발견하기 위한 데이터 마이닝의 한 부문이며 공간 데이터는 점, 선, 사각형, 다각형 등으로 이루어져 있다. 공간 데이터 마이닝은 지리정보시스템(GIS)과 더불어 최근에 많은 관심과 연구가 활발히 진행되고 있다. 한편, 공간 데이터 마이닝을 위한 질의 언어와 그 언어에 기반한 공간 데이터 마이닝 질의 처리 및 최적화에 대한 연구가 중요하게 대두되고 있다. 공간 데이터에 대한 마이닝은 일반 관계형 데이터베이스에서의 질의 언어로는 표현이 불가능하다. 본 연구에서는 먼저 공간 데이터 마이닝 질의언어를 정의, 설계하고 질의 언어에 결과 표현 방식과 결과 데이터 집합의 저장을 명시하여 질의 표현의 효율을 높이는 방식을 제시하였다. 또한 공간 데이터 마이닝을 위한 질의 처리 및 최적화 과정을 질의에 기반한 공간 실체화 뷰의 생성과 유지, 인덱스 활용을 통한 질의 재사용, sampling 마이닝 질의 option 등의 방법론을 이용하여 제시하였다.

  • PDF

Ubiquitous Data Mining, Challenge and Task (유비쿼터스 데이터 마이닝, 도전과 과제)

  • Jun Sung-Hae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.57-60
    • /
    • 2005
  • 21세기에 들어서면서 인터넷은 새로운 패러다임인 유비쿼터스 컴퓨팅 환경으로 빠르게 바뀌고 있다. 특히 2005년에 접어들면서 유비쿼터스는 정보기술 분야에서 건설, 의료, 교통, 안전, 교육 등 사회 각 분야에서 유비쿼터스 컴퓨팅의 도입을 추진하고 있다 동시에 유비쿼터스 컴퓨팅이 각 분야에서 적용이 될 때에는 지능형 시스템에 의한 서비스가 이루어 져야 한다는 것에 대하여 모두가 공감하고 있다. 지능형 유비쿼터스 서비스가 이루어지기 위한 하나의 방법으로서 현재 인터넷의 지능형 서비스에서 활발하게 이루어지고 있는 데이터 마이닝 전략이 있다. 즉 유비쿼터스 컴퓨팅 환경에서 발생하는 엄청난 양의 데이터를 분석하여 지능형 유비쿼터스 서비스를 하기 위한 데이터 마이닝 분야가 바로 유비쿼터스 데이터 마이닝이다. 유비쿼터스 데이터 마이닝은 오프라인 데이터 마이닝, 웹 마이닝 등에 비해 여러 가지 다른 점들이 있다. 본 논문에서는 유비쿼터스 데이터 마이닝에 대한 소개와 기존의 데이터 마이닝 프로세스와의 차이점을 알아본다. 아울러 유비쿼터스 컴퓨팅 환경에서 이루어져야 할 데이터 마이닝 전략의 과제와 도전에 대한 이슈들을 살펴보고 몇 가지 모의실험을 통하여 이것들에 대한 확인을 하였다.

  • PDF

업체탐방 - 데이터 마이닝 연구회

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.8 s.63
    • /
    • pp.38-39
    • /
    • 1998
  • 심화된 경쟁환경속에서 기업들은 정보기술을 이용해 데이터 웨어하우스를 구축하고 그 자료를 바탕으로 데이터 마이닝을 실시해 전략적 의사결정을 하고 있다. 이런 가운데 국내 업계와 학계에서 데이터 마이닝에 대한 다양한 연구가 활발하게 추진되고 있다. 이런 연구를 체계화, 실용화하기 위해 데이터 마이닝 연구회가 설립되어 관심을 끌고 있다. 데이터 마이닝 연구회의 초대 위원장을 맡은 지원철 교수를 통해 창립배경과 활동방향을 들어봤다.

  • PDF

Explanation-based Data Mining in Data Warehouse (데이터 웨어하우스 환경에서의 설명기반 데이터 마이닝)

  • 김현수;이창호
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.115-123
    • /
    • 1999
  • 산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이터들이 축적되고 있다. 이러한 데이터로부터 유용한 지식을 추출하기 위해 여러 가지 데이터 마이닝 기법들이 연구되어왔다. 특히 데이터 웨어하우스의 등장은 이러한 데이터 마이닝에 있어 필요한 데이터 제공 환경을 제공해 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이터 마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또는 관련성 없는(trivial, spurious and irrelevant)내용만 무수히 쏟아낼 수 있다. 그러므로 데이터 마이닝의 결과가 비록 통계적 유의성을 가진다 하더라도 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이터 마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문에서는 데이터 마이닝 기법 중 연관규칙탐사로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하며, 이를 통해 얻어진 검증된 지식을 토대로 일반화를 통한 새로운 가설을 생성하여 데이터 웨어하우스로부터 연관규칙을 검증하는 일련의 아텍쳐(architecture)를 제시하고다 한다. 먼저 데이터 마이닝 결과에 대한 설명의 필요성을 제시하고, 데이터 웨어하우스와 데이터 마이닝 기법들에 대한 간략한 설명과 연관규칙탐사에 대한 정의 및 방법을 보이고, 대상 영역에 대한 데이터 웨어하우스으 스키마를 보였다. 다음으로 도메인 지식(domain knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기위한 지식표현 방법으로 Relational Predicate Logic을 제안하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대해 Relational Predicate Logic으로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사를 통해 검증한 후 새로운 지식을 얻는 반복적인 Explanation-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이터 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 도메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이터 마이닝 접근을 제시하였다는데 있다.

  • PDF

Design and Implementation of a Data Mining Query Processor (데이터 마이닝 질의 처리를 위한 질의 처리기 설계 및 구현)

  • Kim, Chung-Seok;Kim, Kyung-Chang
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.117-124
    • /
    • 2001
  • A data mining system includes various data mining functions such as aggregation, association and classification, among others. To express these data mining function, a powerful data mining query language is needed. In addition, a graphic user interface(GUI) based on the data mining query language is needed for users. In addition, processing a data mining query targeted for a data warehouse, which is the appropriate data repository for decision making, is needed. In this paper, we first build a GUI to enable users to easily define data mining queries. We then propose a data mining query processing framework that can be used to process a data mining query targeted for a data warehouse. We also implement a schema generate a data warehouse schema that is needed to build a data warehouse. Lastly, we show the implementation details of a query processor that can process queries that discover association rules.

  • PDF

Data mining analysis for short-term water demand forecasting (물 수요예측을 위한 데이터 마이닝 기법 분석)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1771_1772
    • /
    • 2009
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.

  • PDF

데이터 마이닝의 금융권 활용방안

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.6 s.61
    • /
    • pp.126-131
    • /
    • 1998
  • 이번 호에는 금융업계에서의 데이터 마이닝의 적용사례에 대해서 살펴보겠다. 그동안 5회에 걸쳐 1,2회에서는 데이터 마이닝의 전반적 소개를, 그리고 3~5회동안 활용사례를 집중적으로 소개했다. 데이터 웨어하우스의 활용에서 가장 각광받고 있는 분야가 데이터 마이닝이라는 것에는 많은 사람들이 공감을 표하고 있다. ROI라는 측면에서 보아도 가장 쉽게, 안심하고 다가갈 수 있는 분야 또한 데이터 마이닝이다. 그러나 마이닝이란 단순히 마이닝 출 혹은 마이닝 기법이라는 요술 방망이를 통해서 나오는 금은보화는 결코 아니다.

  • PDF

트랜드리포트- 데이터 마이닝 이슈

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.8 s.75
    • /
    • pp.59-61
    • /
    • 1999
  • 데이터 마이닝이 기업의 수익을 창출하는 가장 주목받는 프로세스 대두된 것은 이미 오래전이다. 그러나 데이터 마이닝을 가장 효율적이고 기업에 맞게 사용하기 위해 필요한 요소가 무엇인지에 대한 고민들이 부족한 것은 사실이다. 따라서 데이터 마이닝과 관련하여 업계에서 논란이 되고 있는 주요 이슈를 한국 SAS의 자료를 중심으로 살펴본다.

  • PDF

Mathematical Foundations and Educational Methodology of Data Mining (데이터 마이닝의 수학적 배경과 교육방법론)

  • Lee Seung-Woo
    • Journal for History of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.95-106
    • /
    • 2005
  • This paper is investigated conception and methodology of data selection, cleaning, integration, transformation, reduction, selection and application of data mining techniques, and model evaluation during procedure of the knowledge discovery in database (KDD) based on Mathematics. Statistical role and methodology in KDD is studied as branch of Mathematics. Also, we investigate the history, mathematical background, important modeling techniques using statistics and information, practical applied field and entire examples of data mining. Also we study the differences between data mining and statistics.

  • PDF

A Study on Accuracy Improvement of Intrusion Detection System Based on Data Mining (데이터 마이닝에 기반한 침입탐지시스템의 탐지 정확도 향상에 관한 연구)

  • Song Jungsuk;Takakura Hiroki;Okabe Yasuo;Kwon Yong-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.208-210
    • /
    • 2005
  • 공격 방법의 다양화와 지능화에 대응하기 위해 침입탐지시스템(IDS)의 성능도 향상되고 있다. 특히, 데이터 마이닝 기반의 침입탐지시스템은 기존 침입탐지시스템의 많은 문제점을 개선시켰다. 그러나 데이터 마이닝에 기반한 침입탐지시스템의 탐지 정확도가 트레이닝 데이터(training data)에 포함된 속성(features)과 선택된 axis 및 reference 속성에 의해 결정됨에도 불구하고 현재의 데이터 마이닝 기반의 침입탐지시스템은 트레이닝 데이터에 포함된 고유의 속성만을 고려하기 때문에 탐지 정확도를 향상시키는 데는 한계가 있다. 따라서 본 논문에서는 데이터 마이닝에 기반한 침입탐지시스템의 탐지 정확도를 향상시키기 위하여 기존 데이터 마이닝 기반의 침입탐지시스템이 고려했던 고유의 속성 외에 침입과 밀접하게 관련되고 axis및 reference속성으로도 사용될 수 있는 새로운 속성을 제안한다.

  • PDF