• Title, Summary, Keyword: 군집분석

Search Result 3,197, Processing Time 0.043 seconds

Intelligent Data Mining Agent for Automatic Clustering (자동 군집화를 위한 지능화된 데이터 마이닝 에이전트)

  • 박정은;전성해;오경환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.370-376
    • /
    • 2002
  • 인터넷 환경에서 발생되는 수많은 데이터를 지능적으로 처리할 수 있는 자동화된 분석 시스템의 필요성이 제기된다. 이러한 시스템의 데이터 분석은 크게 지도 학습과 자율 학습으로 나된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 지능화된 데이터 마이닝 에이전트를 제안한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 본 논문의 자동 군집화를 위한 지능화된 데이터 마이닝 에이전트 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 구성된 다중 에이전트로서 두 개의 에이전트가 서로 정보를 교환하면서 최적의 군집화를 수행한다. UCI Machine Repository 데이터를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.

  • PDF

혁신수용에 관한 군집화 연구

  • Ryu, Gwi-Yeol;Choe, Gi-Cheol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • /
    • pp.213-218
    • /
    • 2003
  • 본 논문은 혁신수용에 대한 한국인들의 군집화에 관한 연구로서, 분류된 군집의 라이프스타일 등의 특성을 밝힐 것이다. 연구를 위해 2003년 6월 9일부터 27일까지 설문조사를 실시하였으며, Ward의 군집분석 방법을 이하여 분석하였다. Rogers가 혁신 수용에 관한 군집을 통계적 이론을 바탕으로 다섯 가지로 분류한 바 있으나 본 연구에서는 혁신층이 11%, 조기다수층이 24.4%, 후기다수층이 48.9%, 후발수용층이 15.7% 등 네 가지 군집으로 분류될 수 있음을 알 수 있었고, 이 군집들의 라이프스타일을 연구하였다. 또한 Rogers의 연구 결과와 비교해 볼 때, 조기수용층이 혁신층으로 흡수되었다. 이러한 결과는 두터운 혁신층을 바탕으로 신제품이나 새로운 서비스를 처음 받아들이는 계층이 넓다는 것을 의미하고, 우리나라에서는 신제품을 개발 시험할 수 있는 좋은 구조를 가지고 있음을 의미하고, 반면에 조기다수층이 혁신 수용에 신중함으로 보이고 있기 때문에 혁신의 확산에 높은 저항이 있음을 알 수 있다. 세계각국에서 적극적으로 추진하고 있는 초고속 인터넷 서비스 분야 성공은 다른 나라에 비해 서비스를 빠르게 수용하고 이 후 높은 품질의 서비스와 고객만족을 기업들에 요구하고, 기업들의 적절한 대응의 결과로 설명될 수 있다.

  • PDF

Plant Community Structure Analysis in Noinbong area of Odaesan National Park (오대산 국립공원 노인봉지역 식물군집구조분석)

  • 최송현;권전오;민성환
    • Korean Journal of Environment and Ecology
    • /
    • v.9 no.2
    • /
    • pp.156-165
    • /
    • 1996
  • To investigate the forest structure and to suggest the management of vegetation landscape in Noinbong area, Pdaesan National Pa, twelve plots were set up and surveyed. According to the acalysis of classification by TWINSPAN, the community was divided by two groups of Carpinus laxiflora - Quercus mongolica community and the other is Betula costata - schmidtii - C. laxiflora community. It was found out that the successional stage of Noinbong forests was climax and introduced-climax by the analysis of species structure, similarity index and species diversity. The number of individuals was about 120~130 and species was 17 per 100m$^{2}$. Through the analysis of basal area and DBH class distribution, it was estimated that C. laxiflora, B. costata, and B. schmidtii will be clmax species instead of Q. mongolica in tree layer, and in the subtree layer, Acer pseudo-sieboldianum will be dominant species.

  • PDF

Analysis of Influential Factors in the Relationship between Innovation Efforts Based on the Company's Environment and Company Performance: Focus on Small and Medium ICT Companies (기업의 환경적 특성에 따른 혁신활동과 기업성과간 영향요인 분석 : ICT분야 중소기업을 중심으로)

  • Kim, Eun-jung;Park, Ho-young
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • /
    • pp.989-1018
    • /
    • 2017
  • 본 연구에서는 내 외부 환경, 혁신활동이 기업성과에 어떠한 영향을 미치는지를 파악하기 위해 탐색적 요인분석(Exploratory Factor Analysis), 군집분석(Cluster Analysis), 구조방정식모형(Structural Equation Modeling)을 이용하여 실증분석을 실시하였다. 탐색적 요인분석을 통해 7개의 요인이 추출하였으며, 추출된 요인을 기반으로 군집분석을 시도하였더니 총 4개의 군집(n=1,022)이 형성되었다. 군집 4개의 대해 구조방정식 모형을 활용하여 실증분석을 한 결과, 기술 경쟁 환경에 민감하며, 혁신적인 성향을 가진 군집1은 자체기술개발만이 기업성과에 긍정적 영향을 미치는 것으로 나타났다. 시장 환경에 민감하며, 내향적인 성향을 가진 군집2는 자체기술개발과 공동연구를 통해서만 기업성과에 긍정적 영향을 미치는 것으로 나타났다. 경쟁적인 환경에 민감하며, 혁신적이고 정부/관련기관과의 협력적 성향을 가진 군집3은 공동연구 그리고 매개변수인 정부지원프로그램 활용을 통해 기업성과에 긍정적 영향을 미치는 것으로 나타났으며, 기술도입은 기업성과에 부정적 영향을 미치는 것으로 나타났다. 개방적이고 외부협력적 성향이 강한 군집4는 자체기술개발과 매개변수인 네트워크 활용 및 정부지원프로그램 활용이 기업성과에 긍정적 영향을 미치는 것으로 나타났다.

  • PDF

Classification of universities in Daegu·Gyungpook by support vector cluster analysis (서포트벡터 군집분석을 이용한 대구·경북지역 대학의 분류)

  • Park, Hye Jung;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.783-791
    • /
    • 2013
  • There are sixteen indicators of "College Information" found on the website of College Information Disclosure Center. Among these indicators, the current study examined an enrollment rate and an employment rate based on health insurance coverage, and focused on twenty-four universities in Daegu and Gyeongbuk area. The universities were classified into groups by the enrollment rate and employment rate. This study investigated the characteristics pertaining to those different groups. Hierarchical cluster analysis and support vector cluster analysis were conducted in order to analyze the characteristics of the groups statistically.

Comparison Study of Time Series Clustering Methods (시계열자료 눈집방법의 비교연구)

  • Hong, Han-Woom;Park, Min-Jeong;Cho, Sin-Sup
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1203-1214
    • /
    • 2009
  • In this paper we introduce the time series clustering methods in the time and frequency domains and discuss the merits or demerits of each method. We analyze 15 daily stock prices of KOSPI 200, and the nonparametric method using the wavelet shows the best clustering results. For the clustering of nonstationary time series using the spectral density, the EMD method remove the trend more effectively than the differencing.

Plant Community Structure of Donghakas Valley in Kyeryongsan National Park (계룡산국립공원 동학사 계곡의 식물군집구조)

  • Han, Bong-Ho;Cho, Woo;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.4
    • /
    • pp.238-251
    • /
    • 2001
  • 본 연구는 계룡산국립공원 동학사 계곡의 식물군집구조를 파악하기 위하여 실시되었으며, 10cm$\times$10m(100$\m^2$) 조사구를 52개 설정하여 식생조사를 실시하였다. 52개 조사구는 TWINSPAN에 의한 classifi-cation 분석과 DCA ordination 분석을 통하여 소나무군집(16개 조사구), 밤나무군집(4개 조사구), 신갈나무군집(5개 조사구), 졸참나무군집(13개 조사구), 느티나무군집(4개 군집), 서어나무군집(10개 조사구)으로 나누어졌다. 6개 군집의 천이경향을 살펴보면 소나무군집, 신갈나무군집, 졸참나무군집,느티나무군집은 각 층위별 안정된 층위구조로 현상태를 유지할 것이며, 밤나무구닙은 참나무류를 거쳐 서어나무로의 천이가 진행될 것으로 판단되었고, 서어나무군집은 졸참나무와 굴참나무군집으로 퇴행천이될 것이다. 6개 군집의 Shannon의 종다양도지수는 1.2732~1.4699이었다.

  • PDF

K-means clustering using a center of gravity for grid-based sample (그리드 기반 표본의 무게중심을 이용한 케이-평균군집화)

  • Lee, Sun-Myung;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter (약동학적 파라미터를 이용한 시간경로 마이크로어레이 자료의 군집분석)

  • Lee, Hyo-Jung;Kim, Peol-A;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.623-631
    • /
    • 2011
  • A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.

Agglomerative Hierarchical Clustering Using Latent Semantic Analysis in Information Retrieval (정보 검색에서의 잠재 의미 분석 방법을 이용한 응집 계층 군집화 기법 연구)

  • Khiati, Abdel-Ilah Zakaria;Kang, Daehyun;Park, Hansaem;Kwon, Kyunglag;Chung, In-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.952-955
    • /
    • 2014
  • 본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.