• Title, Summary, Keyword: 고품질 재생시멘트

Search Result 10, Processing Time 0.035 seconds

An Evaluation on the Performance of Recyclable Cement by Micron Separating Method (미세분급 방법 개선에 의한 재생시멘트의 성능 평가)

  • Hong, Young-Tae;Kim, Sae-Young;Ko, Eun-Hye;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • /
    • pp.39-42
    • /
    • 2006
  • In this study, there is purpose that is on a concrete defect happen from aggregate minute's particle mixing in process that make waste concrete as recyclable cement puts to practical use constructing basic data for design of mix proportion used recyclable cement and solves strength fall problem using micron separator, and does general recyclable cement high quality. As a result of X-ray diffraction(XRD) of rater HR-C than NR-C is aware that it come out the micron-separating to decrease the $SiO_2$-peak below 50%. And a construction field which apply for strength's $24{\sim}28MPa$ HR-C in order to realize NR-C of 44% and 51%. Recycle concrete capacity through improved recycle cement of manufacturing technique by micron-separating's new distribution more better improvement. Therefore, in this study, it need to more various study a recycle cement of high quality for reasonable and utility recycling than disposal concrete.

  • PDF

Experimental Study for Utilizing of Recycling Fine Aggregate as Precast Concrete Aggregate (재생(再生)잔골재(骨材)를 프리캐스트 콘크리트용(用) 골재(骨材)로 활용(活用)하기 위한 실험적(實驗的) 연구(硏究))

  • Moon, Dae-Joong;Moon, Han-Young;Kim, Yang-Bae;Lim, Nam-Woong
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.15 no.2
    • /
    • pp.24-31
    • /
    • 2006
  • The duality of recycled fine aggregate (RS) which was produced at the waste concrete crushing was investigated. The compressive strength, flexural strength and absorption of mortar utilized with RS were examined. It was evaluated on the application of RS as precast concrete aggregate. The density and absorption of RS were $2.31g/cm^3$ and 8.07% respectively, the quality of RS was satisfied with the criterion of KS F 2573 type 2. The maximum 28days compressive strength of mortar mixed with blended cement MRS1, MRS2 and MRS3 were developed with 15.8, 27.4 and 48.7MPa respectively, in condition to curing temperature $40^{\circ}C$ and water-cement ratio 37.5%. When blended cement MRS1 and MRS2 were used, the maximum flexural strength of mortar was developed at curing temperature $40^{\circ}C$ and water-cement ratio 35.0%. When blended cement MRS3 was used, the maximum flexural strength of mortar was developed at curing temperature $40^{\circ}C$ and water-cement ratio 37.5%. The absorption of mortar mixed with blended cement MRS1, MRS2 and MRS3 were indicated the range of $8.3{\sim}7.3%,\;6.5{\sim}8.5%$ and $3.5{\sim}6%$ respectively. Therefore, when the ratio of blended cement and RS is appropriately centre]led, it would be expected that MRS1, MRS2 and MRS3 will be able to apply the variable low strength, medium strength and high strength precaste concrete.

Physical properties of concrete using high quality recycled aggregates (고품질 재생골재를 사용한 콘크리트의 물리적 특성)

  • Um, Nam-Il;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Ahn, Ji-Whan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • /
    • pp.350-354
    • /
    • 2005
  • 본 연구에서는 건설폐기물에 포함되어있는 폐콘크리트를 사용하여 $200^{\circ}C,\; 300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$로 각 온도에 따라 열화 처리한 후 분쇄하여 시멘트 페이스트 분리량과 골재의 물리적 특성을 파악하였다. 열화 처리의 온도가 높아질수록 시멘트 페이스트의 분리율은 높아졌으며, 압축강도는 낮아지는 경향을 보였다.

  • PDF

An Experimental Study on Heating Manufacture of Recycled Aggregate by Design of Experiment (실험계획법을 이용한 가열방식의 순환굵은골재 제조를 위한 실험적 연구)

  • Nam, Eun-Yong;Hwang, Sun-Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • The use of wasted concrete can settle the environmental pollution and shortage of natural aggregate. However, recycled aggregate includes substantial amount of cement paste, so that these aggregates are more porous, and less resistant to mechanical actions than natural aggregates. Recently, the new manufacturing processes of high quality recycled aggregates were suggested such as heating. In this paper, for the purpose of manufacture of high quality recycled aggregates, the heating processes was considered to the existing process of recycled aggregates. To find the optimum process, the experiment was performed through the statistical design of experiment. The heating temperatures of 4 levels (300, 450, 600 and $750^{\circ}C$) and heating duration time (5, 20, 40, 60minute) were main experimental variables. Through the test results, it was found that the optimum manufacturing condition of coarse recycled aggregate was evaluated to be $600^{\circ}C$ and 40minute.

  • PDF

A study on the application of waste concrete powder as a material for construction (건설용 재료로써 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Sang-Chel;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.88-94
    • /
    • 2012
  • This study is conducted to utilize waste concrete powder made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was 928 and $1,360cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. The viscosity of the paste that mixed waste concrete power decreased by 62% at the most, compared to the paste that only used OPC, and the final set time was delayed about two hours. As composition rates of waste concrete powder increased, the flow value decreased by 30% at the most according to the comparison with mortar that only used OPC, and sorptivity coefficients increased by 70%. The compressive strength of mortar decreased by 73% at the most as composition rates of waste concrete powder increased. According to the test results, it is desirable to use waste concrete powder by combining OPC appropriately(below 15%).

  • PDF

The Experimental Study on The Compressive Strength of Mortar Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abraser (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 모르타르 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Han, Sang-Il;Kim, Ha-Suk;Jun, Myong-Hun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.485-488
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that mortar using recycled fine aggregate containing calcined gypsum has lowest compressive strength. It seems that low compressive strength is closely associated with the expansion of the specimen by excessive formation of ettringite.

  • PDF

Application of Waste Concrete Powder as Silica Powder of Cement Extruding Panel (시멘트 압출패널의 규사분말 대체재로서 폐콘크리트 미립분의 활용)

  • Kim, Jin-Man;Kim, Kee-Seok;La, Jung-Min;Choi, Duck-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.88-94
    • /
    • 2011
  • To make recycling aggregate, quantity of fine particles increase due to multi-crushing. Though this particles were mixed with recycling aggregate, those have to be disparted from aggregate in the high quality recycling aggregate, because of the cause of low quality. Considering reactivity, fine particles is better than coarse one. Therefore, it needs to develop suitable usage. We try to make cement extruding material by using the fine particles from concrete recycling, as a silicious replacement. Test results are as follows ; 1) Waste concrete powder has major ingredients such as $SiO_2$ and CaO, its density is $2.45g/cm^3$ being similar to silica powder, its diameter is range 13 to $141{\mu}m$. 2) Considering to strength properties according to particle size, specimen was made using small particles is higher strength than large one. 3) Despite of exception in the autoclaved curing, when the replacement of waste fine particle increase, strength of extruding panel shows almost same level.

  • PDF

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

The Experimental Study on The Compressive Strength of Concrete Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abrasional (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 콘크리트 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Kim, Ha-Suk;Kawk, Eun-Gu;Kang, Chul;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.385-388
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that concrete using recycled fine aggregate containing calcined gypsum is higher compressive strength than concrete using other sands.

  • PDF

Flowability and Strength Properties of Mortar and Self-Compacting Concrete Mixed with Waste Concrete Powder (폐콘크리트 분말을 혼합한 모르타르 및 자기충전 콘크리트의 유동 및 강도특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Moon, Dae-Joong;Kim, Sung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4
    • /
    • pp.517-526
    • /
    • 2006
  • In this study, in order to utilize waste concrete powder(WCP) which is occurred in manufacturing high quality recycled aggregate as an admixture for self-compacting concrete(SCC), the properties of cement paste, mortar, and concrete that were mixed two types of WCP, 928 and 1,360 $cm^2/g$ of surface area, were analyzed. As a result of experiment, we have found that WCP was a porous material with angle. When WCP was utilized as an admixture for SCC, its flowability and viscosity increased in proportion to the increase of a replacement ratio, and that a replacement ratio of WCP was proper within 15%. The compressive strength at 28 days mixed respectively with WCP2, 15 and 30%, showed about 36 and 28 MPa, and it showed a similar trend with a function suggested in CEB-FIP for the relationship of compressive strength and elastic modulus. According to the results, it is judged that WCP2 can be utilized as an mineral admixture of normal strength SCC.