• Title, Summary, Keyword: 감정 인식

Search Result 681, Processing Time 0.052 seconds

Emotion Recognition using Speech Recognition Information (음성 인식 정보를 사용한 감정 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

Emotion Recognition using Robust Speech Recognition System (강인한 음성 인식 시스템을 사용한 감정 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.586-591
    • /
    • 2008
  • This paper studied the emotion recognition system combined with robust speech recognition system in order to improve the performance of emotion recognition system. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. Final emotion recognition is processed using the input utterance and its emotional model according to the result of speech recognition. In the experiment, robust speech recognition system is HMM based speaker independent word recognizer using RASTA mel-cepstral coefficient and its derivatives and cepstral mean subtraction(CMS) as a signal bias removal. Experimental results showed that emotion recognizer combined with speech recognition system showed better performance than emotion recognizer alone.

The Design of Context-Aware Middleware Architecture for Emotional Awareness Using Categorization of Feeling Words (감정표현단어 범주화 기반의 감정인식을 위한 상황인식 미들웨어 구조의 설계)

  • Kim, Jin-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.998-1000
    • /
    • 2014
  • 상황인식 컴퓨팅 환경에서 가장 핵심적인 부분은 서비스를 제공받는 객체의 상황(Context)을 인식하고 정보화하여 그 상황에 따라서 객체 중심의 지능화된 최적의 서비스를 제공해 주는 것이다. 이러한 지능화된 최적의 서비스를 제공하기 위해서는 최적의 상황을 인식하는 상황인식 컴퓨팅 기술 연구와 그 상황을 설계하는 모델링 기술이 중요하다. 또한, 인간과 컴퓨터간의 의사소통을 원활히 할 수 있는 최적의 상황을 인식해야 한다. 현재까지 연구된 대부분의 상황인식 컴퓨팅 기술은 상황정보로 객체의 위치정보와 객체의 식별정보만을 주로 사용하고 있다. 그러므로 지정된 공간에서 상황을 발생시키는 객체를 식별하는 일과 식별된 객체가 발생하는 상황의 인식에만 주된 초점을 두고 있다. 그러나 본 논문에서는 객체의 감정표현단어를 상황정보로 사용하여 감정인식을 위한 상황인식 미들웨어로서 ECAM의 구조를 제안한다. ECAM은 감정표현단어의 범주화 기술을 기반으로 온톨로지를 구축하여 객체의 감정을 인식한다. 객체의 감정표현단어 정보를 상황정보로 사용하고, 인간의 감정에 영향을 미칠 수 있는 환경정보(온도, 습도, 날씨)를 추가하여 인식한다. 객체의 감정을 표현하기 위해서 OWL 언어를 사용하여 온톨로지를 구축하였으며, 감정추론 엔진은 Jena를 사용하였다.

An Emotion Recognition Method using Facial Expression and Speech Signal (얼굴표정과 음성을 이용한 감정인식)

  • 고현주;이대종;전명근
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.799-807
    • /
    • 2004
  • In this paper, we deal with an emotion recognition method using facial images and speech signal. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Emotion recognition using the facial expression is performed by using a multi-resolution analysis based on the discrete wavelet transform. And then, the feature vectors are extracted from the linear discriminant analysis method. On the other hand, the emotion recognition from speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and then the final recognition is obtained from a multi-decision making scheme.

Design of Emotion Recognition system utilizing fusion of Speech and Context based emotion recognition in Smartphone (스마트폰에서 음성과 컨텍스트 기반 감정인식 융합을 활용한 감정인식 시스템 설계)

  • Cho, Seong Jin;Lee, Seongho;Lee, Sungyoung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.323-324
    • /
    • 2012
  • 최근 스마트폰 환경에서 제공되는 수많은 서비스들은 일률적으로 소비자에게 단방향으로 제공되던 예전과 달리 사용자마다 개인화된 서비스 제공을 통해, 더욱 효율적으로 서비스를 제공하려는 시도들이 이루어지고 있다. 그 중에서 감정인식을 이용한 연구는 사용자에게 최적화된 개인화 서비스 제공을 위해 사용자의 감정을 인식하여 사용자가 느끼는 감정에 맞는 서비스를 제공함으로써 보다 몰입감을 느낄 수 있도록 하여 결과적으로 특정 서비스의 이용을 유도하도록 할 수 있다. 본 논문에서는 사용자 선호도와 컨텍스트 정보를 활용하여 사용자의 감정을 추출하고 이를 음성기반 감정인식과 융합하여 그 정확도를 높이고 실제서비스에서 활용할 수 있는 시스템 설계를 제안한다. 제안하는 시스템은 사용자 선호도와 컨텍스트 인식으로 감정을 판단했을 경우의 오류를 음성을 통한 감정인식으로 보완하며, 사용자가 감정인식 시스템을 활용하기 위한 비용을 최소화한다. 제안하는 시스템은 스마트폰에서 사용자 감정을 이용한 애플리케이션이나 추천서비스 등에서 활용이 가능하다.

  • PDF

An Emotion Recognition and Expression Method using Facial Image and Speech Signal (음성 신호와 얼굴 표정을 이용한 감정인식 몇 표현 기법)

  • Ju, Jong-Tae;Mun, Byeong-Hyeon;Seo, Sang-Uk;Jang, In-Hun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.333-336
    • /
    • 2007
  • 본 논문에서는 감정인식 분야에서 가장 많이 사용되어지는 음성신호와 얼굴영상을 가지고 4개의(기쁨, 슬픔, 화남, 놀람) 감정으로 인식하고 각각 얻어진 감정인식 결과를 Multi modal 기법을 이용해서 이들의 감정을 융합한다. 이를 위해 얼굴영상을 이용한 감정인식에서는 주성분 분석(Principal Component Analysis)법을 이용해 특징벡터를 추출하고, 음성신호는 언어적 특성을 배재한 acoustic feature를 사용하였으며 이와 같이 추출된 특징들을 각각 신경망에 적용시켜 감정별로 패턴을 분류하였고, 인식된 결과는 감정표현 시스템에 작용하여 감정을 표현하였다.

  • PDF

Speech emotion recognition for affective human robot interaction (감성적 인간 로봇 상호작용을 위한 음성감정 인식)

  • Jang, Kwang-Dong;Kwon, Oh-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.555-558
    • /
    • 2006
  • 감정을 포함하고 있는 음성은 청자로 하여금 화자의 심리상태를 파악할 수 있게 하는 요소 중에 하나이다. 음성신호에 포함되어 있는 감정을 인식하여 사람과 로봇과의 원활한 감성적 상호작용을 위하여 특징을 추출하고 감정을 분류한 방법을 제시한다. 음성신호로부터 음향정보 및 운율정보인 기본 특징들을 추출하고 이로부터 계산된 통계치를 갖는 특징벡터를 입력으로 support vector machine (SVM) 기반의 패턴분류기를 사용하여 6가지의 감정- 화남(angry), 지루함(bored), 기쁨(happy), 중립(neutral), 슬픔(sad) 그리고 놀람(surprised)으로 분류한다. SVM에 의한 인식실험을 한 경우 51.4%의 인식률을 보였고 사람의 판단에 의한 경우는 60.4%의 인식률을 보였다. 또한 화자가 판단한 감정 데이터베이스의 감정들을 다수의 청자가 판단한 감정 상태로 변경한 입력을 SVM에 의해서 감정을 분류한 결과가 51.2% 정확도로 감정인식하기 위해 사용한 기본 특징들이 유효함을 알 수 있다.

  • PDF

Development of Emotion Recognition and Expression module with Speech Signal for Entertainment Robot (엔터테인먼트 로봇을 위한 음성으로부터 감정 인식 및 표현 모듈 개발)

  • Mun, Byeong-Hyeon;Yang, Hyeon-Chang;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.82-85
    • /
    • 2007
  • 현재 가정을 비롯한 여러 분야에서 서비스 로봇(청소 로봇, 애완용 로봇, 멀티미디어 로봇 둥)의 사용이 증가하고 있는 시장상황을 보이고 있다. 개인용 서비스 로봇은 인간 친화적 특성을 가져야 그 선호도가 높아질 수 있는데 이를 위해서 사용자의 감정 인식 및 표현 기술은 필수적인 요소이다. 사람들의 감정 인식을 위해 많은 연구자들은 음성, 사람의 얼굴 표정, 생체신호, 제스쳐를 통해서 사람들의 감정 인식을 하고 있다. 특히, 음성을 인식하고 적용하는 것에 관한 연구가 활발히 진행되고 있다. 본 논문은 감정 인식 시스템을 두 가지 방법으로 제안하였다. 현재 많이 개발 되어지고 있는 음성인식 모듈을 사용하여 단어별 감정을 분류하여 감정 표현 시스템에 적용하는 것과 마이크로폰을 통해 습득된 음성신호로부터 특정들을 검출하여 Bayesian Learning(BL)을 적용시켜 normal, happy, sad, surprise, anger 등 5가지의 감정 상태로 패턴 분류를 한 후 이것을 동적 감정 표현 알고리즘의 입력값으로 하여 dynamic emotion space에 사람의 감정을 표현할 수 있는 ARM 플랫폼 기반의 음성 인식 및 감정 표현 시스템 제안한 것이다.

  • PDF

Development of Emotion Recognition Model based on Multi Layer Perceptron (MLP에 기반한 감정인식 모델 개발)

  • Lee Dong-Hoon;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.372-377
    • /
    • 2006
  • In this paper, we propose sensibility recognition model that recognize user's sensibility using brain waves. Method to acquire quantitative data of brain waves including priority living body data or sensitivity data to recognize user's sensitivity need and pattern recognition techniques to examine closely present user's sensitivity state through next acquired brain waves becomes problem that is important. In this paper, we used pattern recognition techniques to use Multi Layer Perceptron (MLP) that is pattern recognition techniques that recognize user's sensibility state through brain waves. We measures several subject's emotion brain waves in specification space for an experiment of sensibility recognition model's which propose in this paper and we made a emotion DB by the meaning data that made of concentration or stability by the brain waves measured. The model recognizes new user's sensibility by the user's brain waves after study by sensibility recognition model which propose in this paper to emotion DB. Finally, we estimates the performance of sensibility recognition model which used brain waves as that measure the change of recognition rate by the number of subjects and a number of hidden nodes.

Emotion Recognition of User using 2D Face Image in the Mobile Robot (이동로봇에서의 2D얼굴 영상을 이용한 사용자의 감정인식)

  • Lee, Dong-Hun;Seo, Sang-Uk;Go, Gwang-Eun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.131-134
    • /
    • 2006
  • 본 논문에서는 가정용 로봇 및 서비스 로봇과 같은 이동로봇에서 사용자의 감정을 인식하는 방법중 한가지인 얼굴영상을 이용한 감정인식 방법을 제안한다. 얼굴영상인식을 위하여 얼굴의 여러 가지 특징(눈썹, 눈, 코, 입)의 움직임 및 위치를 이용하며, 이동로봇에서 움직이는 사용자를 인식하기 위한 움직임 추적 알고리즘을 구현하고, 획득된 사용자의 영상에서 얼굴영역 검출 알고리즘을 사용하여 얼굴 영역을 제외한 손과 배경 영상의 피부색은 제거한다. 검출된 얼굴영역의 거리에 따른 영상 확대 및 축소, 얼굴 각도에 따른 영상 회전변환 등의 정규화 작업을 거친 후 이동 로봇에서는 항상 고정된 크기의 얼굴 영상을 획득 할 수 있도록 한다. 또한 기존의 특징점 추출이나 히스토그램을 이용한 감정인식 방법을 혼합하여 인간의 감성 인식 시스템을 모방한 로봇에서의 감정인식을 수행한다. 본 논문에서는 이러한 다중 특징점 추출 방식을 통하여 이동로봇에서의 얼굴 영상을 이용한 사용자의 감정인식 시스템을 제안한다.

  • PDF