• Title/Summary/Keyword: $PM_{2.5}$

Search Result 1,105, Processing Time 0.177 seconds

Estimation of the Probability of Exceeding PM2.5 Standards in Busan (부산지역에서의 PM2.5 기준치 미달성확률 추정)

  • Chang, Jae-Soo;Cheong, Jang Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.697-705
    • /
    • 2012
  • Particulate matter (PM) data collected from the Urban Air Monitoring Network in Busan during the period from 2006 through 2010 were statistically examined and analyzed to estimate the probability of exceeding $PM_{2.5}$ 24 hour and annual standard to be implemented from January $1^{st}$, 2015. For Jangrimdong, Yeonsandong, Kijangeup, and Jwadong where simultaneous measurement of $PM_{10}$ and $PM_{2.5}$ was conducted, the probability of exceeding $PM_{2.5}$ standards was estimated using $PM_{2.5}$ data measured on site. For other areas where there were no measured $PM_{2.5}$ data available, the probability of exceeding $PM_{2.5}$ standards was statistically estimated using $PM_{10}$ measured on site and $PM_{2.5}/PM_{10}$ ratios obtained from the four stations where both $PM_{2.5}$ and $PM_{10}$ were monitored simultaneously. At Jangrimdong, Yeonsandong, Kijangeup, and Jwadong, mean value of annual 99 percentile of 24 hr average $PM_{2.5}$ for 5 years from 2006 through 2010 was 99.3, 74.5. 57.0, and $62.5{\mu}g/m^3$, respectively, and the probability of exceeding $PM_{2.5}$ 24 hr standard was estimated at 100%. For areas where there were no measured $PM_{2.5}$ data available, the estimated probability of exceeding $PM_{2.5}$ 24 hr standard was more than 0.82. Mean value of annual average $PM_{2.5}$ from 2008 through 2010 was 31.7 and $27.6{\mu}g/m^3$ for Jangrimdong and Yeonsandong, respectively, which exceeded $PM_{2.5}$ annual standard of $25{\mu}g/m^3$. Mean value of annual average $PM_{2.5}$ during the same period for Kijangeup and Jwadong was 19.2 and $20.7{\mu}g/m^3$, respectively, which satisfied $PM_{2.5}$ annual standard. For other areas where there were no measured $PM_{2.5}$ data available, the probability of exceeding $PM_{2.5}$ annual standard was more than 0.95 except Taejongdae and Kwangahndong. With $PM_{10}$ and $PM_{2.5}$ data measured at 17 Urban Air Monitoring Stations in Busan, the probability of exceeding $PM_{2.5}$ standards was estimated to be very high for almost all areas. This result indicates that proper measures to mitigate $PM_{2.5}$ in Busan should be investigated and established as soon as possible.

Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004 (익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

Characterization of Annual PM2.5 and PM10 Concentrations by Real-time Measurements in Cheonan, Chungnam (실시간 측정을 통한 천안시 대기 중 연간 PM2.5, PM10 농도 특성 조사)

  • Heo, Jung-Hyuk;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.445-450
    • /
    • 2012
  • From 2015, PM2.5 standards will be added to Korean national ambient air quality standards. To characterize PM2.5 levels in Cheonan, annual PM2.5 concentrations along with PM10 concentrations were investigated between February 2010 and January 2011 using a dust monitor. The annual PM2.5 concentration was $40.45{\mu}g/m^3$ and over the standards($25{\mu}g/m^3$). The daily average PM2.5 concentrations ranged from 2.43 to $178.84{\mu}g/m^3$, and 26% days exceeded the daily PM2.5 standard($50{\mu}g/m^3$). During the same periods, only 11% days exceeded the daily PM10 standard, showing that PM2.5 were more concerning levels than PM10. Seasonal variations showed the highest concentrations in spring and winter, and lowest concentration in summer due to heavy rain fall. Changes in PM2.5 concentrations during the day were remarkable and showed the highest concentrations in commuting periods. The results indicated that the concentrations of PM2.5 in Cheonan were at the concerning level, and mainly from the mobile sources.

Development of IoT-based PM2.5 Measuring Device (사물인터넷 기반 초미세먼지(PM2.5) 측정 장치 개발)

  • Loh, Byoung Gook;Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • An IoT-based particulate matter (PM2.5) sensing device (PSD) is developed. The PSD consists of a PM2.5 sensor, signal processing circuit, and wi-fi enabled-microprocessor along with temperature and humidity sensors. The PSD estimates PM2.5 density by measuring light scattered by PM2.5. To gauge performance of the PSD, PM2.5 density of open air was measured with the PSD and compared with that of the collocated-government-certified measuring station. Measurements were taken at a sampling frequency of 100 Hz and moving-averaged to remove measurement noise. When compared to the result of the measuring station, average percentile error of PM2.5 density from the PSD is found to be 31%. A correlation coefficient is found to be 0.72 which indicates a strong correlation. Instantaneous variation, however, may far exceed average errors, leading to a conclusion that the PSD is more suitable for estimating average trend of PM2.5 density variations than estimating instantaneous PM2.5 density.

Characteristics of Diurnal Variation of High PM2.5 Concentration by Spatio-Temporal Wind System in Busan, Korea (시·공간적 풍계에 따른 부산지역 고농도 PM2.5의 일변화 특성)

  • Kim, Bu-Kyung;Lee, Dong-In;Kim, Jeong-Chang;Lee, Jun-Ho
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2012
  • This study was to analyze the characteristics of diurnal variation of high $PM_{2.5}$ concentration, $PM_{2.5}/PM_{10}$ concentration ratio by spatio-temporal wind system (wind speed and wind direction) for high $PM_{2.5}$ concentration (over the 24 hr environmental standard of $PM_{2.5}$, $50{\mu}g/m^3$) in the air quality observation sites (Jangrimdong: Industrial area, Jwadong: Residential area) that were measured for 3 years (2005. 12. 1-2008. 11. 30) in Busan. The observation days of high $PM_{2.5}$ concentration were 182 at Jangrimdong and 27 at Jwadong. The seasonal diurnal variation of hourly mean of high $PM_{2.5}$ concentration and of $PM_{2.5}/PM_{10}$ concentration ratio showed a similar pattern that had higher variation at dawn, and night and in the morning than in the afternoon. Durning daytime in summer at Jwadong, the $PM_{2.5}/PM_{10}$ concentration ratio increased because a secondary particulate matter, which was created by photochemical reaction, decreased the coarse particles of $PM_{10}$ more than the fine particles of $PM_{2.5}$ concentrations in ocean condition. We did an analysis of spatio-temporal wind system (wind speed range and wind direction) in each time zone. The result showed that high $PM_{2.5}$ concentration at Jangrimdong occurred due to the congestion of pollutants emissions from the industrial complex in Jangrimdong area and the transportation of pollutants from places nearby Jangrimdong. It also showed that high $PM_{2.5}$ concentration occurred at Jwadong because of a number of local residential and commercial activities that caused the congestion of pollutants.

Characteristics of In-cabin PM2.5 Concentration in Seoul Metro Line Number 2 in Autumn (서울시 지하철 2호선의 가을철 객실 PM2.5 농도의 특성)

  • Shin, Hyerin;Jung, Hyunhee;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2019
  • Objectives: Subway is one of the most common transportation modes in Seoul, Korea. The objectives of this study were to determine characteristics of in-cabin $PM_{2.5}$ concentration in Seoul Metro Line Number 2 and to identify factors of the $PM_{2.5}$ concentration. Methods: In-cabin $PM_{2.5}$ concentrations in Seoul Metro Line Number 2 were measured using real-time monitors and the factors affecting $PM_{2.5}$ concentration in cabin were observed. Linear regression analysis of in-cabin $PM_{2.5}$ concentration and indoor/outdoor (I/O) ratio were performed. Results: In-cabin $PM_{2.5}$ concentration was associated with the in-cabin $PM_{2.5}$ concentration in previous station. In-cabin $PM_{2.5}$ concentration was correlated with ambient $PM_{2.5}$ concentration and associated with underground station with control of the in-cabin $PM_{2.5}$ concentration in previous station. I/O ratio increased as the number of passengers increased and when passing through the underground station with control of I/O ratio in previous station. Conclusion: In-cabin $PM_{2.5}$ concentration was affected by ambient $PM_{2.5}$ concentration. Therefore, management of in-cabin $PM_{2.5}$ concentrations should be based on outdoor air quality.

A Comparison of PM2.5 and PM10 particles in Pusan Area (부산지역 PM2.5와 PM10 입자조성에 관한 연구)

  • 진보경;김창환;최금찬
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • /
    • pp.143-144
    • /
    • 2000
  • 최근 대기중 입자상 물질에 대한 기준이 강화되고 있으며, TSP에서 PM10으로 기준이 강화되는 등 미세입자에 대한 관심이 높아지고 있다 특히, 호흡범주의 입자에 대한 규제를 목적으로 PM2.5에 대한규제가 미국등 몇 개국에서 시행되고 있으며, PM2.5에 대한 각종 연구들이 활발히 진행되고 있다. TSP 나 PM10 에 대한 각각의 연구들은 많이 보고되고 있으나 PM2.5에 대한 연구는 아직 미진하며 PM10 과 PM2.5 의 상호비교를 고찰한 논문도 그리 많지 않다. (중략)

  • PDF

Characteristics of Water Soluble Ions in Fine Particles during the Winter and Spring in Daegu (대구지역 겨울철과 봄철 미세먼지의 수용성 이온성분 특성)

  • Park, Ji-Yeon;Lim, Ho-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.627-641
    • /
    • 2006
  • Atmospheric $PM_{2.5}$ and $PM_{10}$ were measured to investigate their levels and water-soluble ions(${SO_4}^{2-},\;{NO_3}^-,\;{NO_2}^-,\;Cl^-,\;{NH_4}^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;and\;K^+$) in Daegu between February 17 and April 18, 2006. Four Asian dust episodes during the period were examined for the influence of Asian dust on the particulate properties. Daily $PM_{2.5}\;and\;PM_{2.5-10}$ concentrations ranged between $10.83{\sim}136.76{\mu}g/m^3$ with a mean of $38.43{\mu}g/m^3$ and $16.13{\sim}409.13{\mu}g/m^3$ with a mean of $79.98{\mu}g/m^3$, respectively. For all measured ions the mean fractions of $PM_{2.5}\;and\;PM_{2.5-10}$ were 51.8% and 28.9% being lowered to 30.7% and 9.4%, respectively, during the dust episodes. Secondary ions (i.e., non-sea salt ${SO_4}^{2-},\;{NO_3}^-,\;and\;{NH_4}^+$) contributed 44.3% and 14.8% to $PM_{2.5}\;and\;PM_{2.5-10}$, respectively, with a decreased contribution during the episodes. The average equivalent ratio of ${NH_4}^+$ to the sum of ${SO_4}^{2-}\;and\;{NO_3}^-$ was 0.99 and 0.89 for $PM_{2.5}\;and\;PM_{2.5-10}$, respectively, indicating high source strength of $NH_3$ and its dominance in the neutralization of the acidic ions. Correlations and charge balance between ions suggest that neutralization of the acidic ions results in substantial depletions of carbonate both in $PM_{2.5}\;and\;PM_{2.5-10}$ and chloride only in $PM_{2.5}$.

Trends of the PM2.5 concentrations and high PM2.5 concentration cases by region in Korea (우리나라 지역별 초미세먼지(PM2.5) 농도 추이와 고농도 발생 현황)

  • Yeo, Minju;Kim, Yongpyo
    • Particle and aerosol research
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2019
  • The public's concern on ambient $PM_{2.5}$ has been increasing in Korea. We have estimated (1) the annual and monthly mean $PM_{2.5}$ concentrations, (2) the frequency by the $PM_{2.5}$ concentration interval, and (3) the high concentration occurrence duration time between 2015 and 2018 at 16 administration regions. We found that there have been differences in all three above parameters' trends among the studied 16 regions in Korea. Still, Jeonbuk showed the highest rank in all three parameters' trends. In Jeonbuk, the average $PM_{2.5}$ concentration and the sum of the frequency fraction when the $PM_{2.5}$ concentration being over $75{\mu}g/m^3$ between 2016 and 2018 was $28.4{\mu}g/m^3$ and 9.0%, respectively. And the days when the $PM_{2.5}$ concentration is over $50{\mu}g/m^3$ between 2015 and 2018 were 149. Chungbuk was the only region with the increasing trend of $PM_{2.5}$ concentration between 2016 and 2018. And in Seoul and Gyeonggi, the average $PM_{2.5}$ concentrations decreased whereas the high concentration frequency fraction increased between 2016 and 2018. Also, it is found that there have been differences in the trends of the frequency by the $PM_{2.5}$ concentration interval and the high concentration occurrence duration time between $PM_{10}$ and $PM_{2.5}$.

The Health Effects of PM2.5: Evidence from Korea (대기오염의 건강위해성 연구 - PM2.5를 중심으로 -)

  • Hong, Jong-Ho;Ko, Yookyung
    • Environmental and Resource Economics Review
    • /
    • v.12 no.3
    • /
    • pp.469-485
    • /
    • 2003
  • This paper reports on the results of epidemiological investigation of daily health effects in the elderly associated with daily exposure to particulate matters in Korea. Our main focus is on the potential difference in health effects between PM10 and PM2.5. While the Korean environmental authority has set an ambient standard for PM10, the government currently does not monitor PM2.5, which has no national standard. A daily data on respiratory symptoms as well as PM concentrations are collected for a total of 120 days. Using a probit model, we find statistically significant negative health effects of PM2.5 on respiratory symptoms among the nonsmoking elderly, while PM10 does not show such effects from the estimation. This result suggests that, for air quality regulatory purposes, PM2.5 can be a more appropriate air pollutant than PM10.

  • PDF