• Title, Summary, Keyword: $BayesC{\pi}$

Search Result 2, Processing Time 0.019 seconds

The influence of a first-order antedependence model and hyperparameters in BayesCπ for genomic prediction

  • Li, Xiujin;Liu, Xiaohong;Chen, Yaosheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1863-1870
    • /
    • 2018
  • Objective: The Bayesian first-order antedependence models, which specified single nucleotide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, had more accurate genomic prediction than their corresponding classical counterparts. Given advantages of $BayesC{\pi}$ over BayesA/B, we have developed hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$, and ante-hyper-$BayesC{\pi}$ to evaluate influences of the antedependence model and hyperparameters for $v_g$ and $s_g^2$ on $BayesC{\pi}$.Methods: Three public data (two simulated data and one mouse data) were used to validate our proposed methods. Genomic prediction performance of proposed methods was compared to traditional $BayesC{\pi}$, ante-BayesA and ante-BayesB. Results: Through both simulation and real data analyses, we found that hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$ and ante-hyper-$BayesC{\pi}$ were comparable with $BayesC{\pi}$, ante-BayesB, and ante-BayesA regarding the prediction accuracy and bias, except the situation in which ante-BayesB performed significantly worse when using a few SNPs and ${\pi}=0.95$. Conclusion: Hyper-$BayesC{\pi}$ is recommended because it avoids pre-estimated total genetic variance of a trait compared with $BayesC{\pi}$ and shortens computing time compared with ante-BayesB. Although the antedependence model in $BayesC{\pi}$ did not show the advantages in our study, larger real data with high density chip may be used to validate it again in the future.

Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo)

  • Li, Yi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.926-935
    • /
    • 2015
  • The efficiency of genome-wide association analysis (GWAS) depends on power of detection for quantitative trait loci (QTL) and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM), a combined linkage and linkage disequilibrium analysis (LDLA) and a $BayesC{\pi}$ approach. The phenotypes of 486 steers were collected for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area, and marbling score (Marb). Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP) chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA) 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX]) may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.