DOI QR코드

DOI QR Code

Comparison of Model-simulated Atmospheric Carbon Dioxide with GOSAT Retrievals

  • Received : 2011.07.18
  • Accepted : 2011.11.21
  • Published : 2011.12.31

Abstract

Global atmospheric $CO_2$ distributions were simulated with a chemical transport model (GEOS-Chem) and compared with space-borne observations of $CO_2$ column density by GOSAT from April 2009 to January 2010. The GEOS-Chem model simulated 3-D global atmospheric $CO_2$ at $2^{\circ}{\times}2.5^{\circ}$ horizontal resolution using global $CO_2$ surface sources/sinks as well as 3-D emissions from aviation and the atmospheric oxidation of other carbon species. The seasonal cycle and spatial distribution of GEOS-Chem $CO_2$ columns were generally comparable with GOSAT columns over each continent with a systematic positive bias of ~1.0%. Data from the World Data Center for Greenhouse Gases (WDCGG) from twelve ground stations spanning $90^{\circ}S-82^{\circ}N$ were also compared with the modeled data for the period of 2004-2009 inclusive. The ground-based data show high correlations with the GEOS-Chem simulation ($0.66{\leq}R^2{\leq}0.99$) but the model data have a negative bias of ~1.0%, which is primarily due to the model initial conditions. Together these two comparisons can be used to infer that GOSAT $CO_2$ retrievals underestimate $CO_2$ column concentration by ~2.0%, as demonstrated in recent validation work using other methods. We further estimated individual source/sink contributions to the global atmospheric $CO_2$ budget and trends through 7 tagged $CO_2$ tracers (fossil fuels, ocean exchanges, biomass burning, biofuel burning, net terrestrial exchange, shipping, aviation, and CO oxidation) over 2004-2009. The global $CO_2$ trend over this period (2.1 ppmv/year) has been mainly driven by fossil fuel combustion and cement production (3.2 ppmv/year), reinforcing the fact that rigorous $CO_2$ reductions from human activities are necessary in order to stabilize atmospheric $CO_2$ levels.

Keywords

References

  1. Andres, R.J., Gregg, J.S., Losey, L., Marland, G., Boden, T.A. (2011) Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus 63B, 309-327, doi:10.1111/j.1600-0889.
  2. Baker, D.F., Law, R.M., Gurney, K.R., Rayner, P., Peylin, P., Denning, A.S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I.Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., Zhu, Z. (2006) TransCom 3 inversion intercomparison: impact of transport model errors on the intercontinental variability of regional $CO_2$ fluxes, 1988-2003. Global Biogeochemical Cycle 20, GB1002, doi:10.1029/2004GB002439.
  3. Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q., Liu, H.Y., Mickley, L.J., Schultz, M.G. (2001) Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research 20,106(D19), 23073-23095.
  4. Buchwitz, M., Schneising, O., Burrows, J.P., Bovensmann, H., Reuter, M., Notholt, J. (2007) First direct observation of the atmospheric $CO_2$ year-to-year increase from space. Atmospheric Chemistry and Physics 7, 4249-4256. https://doi.org/10.5194/acp-7-4249-2007
  5. Butz, A., Guerlet, S., Hasekamp, O., Shepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.M., Tran, A., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., Warneke, T. (2011), Toward accurate $CO_2$ and $CH_4$ observations from GOSAT. Geophysical Research Letters 38, L14812, doi:10.1029/2011GRL047888.
  6. Chahine, M.T., Chen, L., Dimotakis, P., Jiang, X., Li, Q., Olsen, E.T., Pagano, T., Randerson, J., Yung, Y.L. (2008) Satellite remote sounding of mid-tropospheric $CO_2$. Geophysical Research Letters 35, L17807, doi: 10.1029/2008GL035022.
  7. Chevallier, F., Engelen, R.J., Carouge, C., Conway, T.J., Peylin, P., Pickett-Heaps, C., Ramonet, M., Rayner, P.J., Xueref-Remy, I. (2009) AIRS-based versus flaskbased estimation of carbon surface fluxes. Journal of Geophysical Research 114, D20303, doi:10.1029/2009JD012311.
  8. Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., Ciais, P. (2005) Inferring $CO_2$ sources and sinks from satellite observations: Method and application to TOVS data. Journal of Geophysical Research 110, D24309, doi:10.1029/2005JD006 390.
  9. Conway, T.J., Tans, P.P., Waterman, L.S., Thoning, K.W., Kitzis, D.R., Masarie, K.A., Zhang, N. (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network. Journal of Geophysical Research 99, 22831-22855. https://doi.org/10.1029/94JD01951
  10. Crevoisier, C., Chédin, A., Matsueda, H., Machida, T., Armante, R., Scott, N.A. (2009) First year of upper tropospheric integrated content of $CO_2$ from IASI hyperspectral infrared observations. Atmospheric Chemistry and Physics 9, 4797-4810. https://doi.org/10.5194/acp-9-4797-2009
  11. Kadygrov, N., Maksyutov, S., Eguchi, N., Aoki, T., Nakazawa, T., Yokota, T., Inoue, G. (2009) Role of simulated GOSAT total column $CO_2$ observations in surface $CO_2$ flux uncertainty reduction. Journal of Geophysical Research 114, D21208, doi:10.1029/2008JD011597.
  12. Keeling, C.D., Whorf, T.P., Wahlen, M., Vanderplicht, J. (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666-670. https://doi.org/10.1038/375666a0
  13. Kulawik, S.S., Jones, D.B.A., Nassar, R., Irion, F.W., Worden, J.R., Bowman, K.W., Machida, T., Matsueda, H., Sawa, Y., Biraud, S.C., Fisher, M., Jacobson, A.R. (2010) Characterization of Tropospheric Emission Spectrometer (TES) $CO_2$ for carbon cycle science. Atmospheric Chemistry and Physics 10, 5601-5623. https://doi.org/10.5194/acp-10-5601-2010
  14. Kuze, A., Urabe, T., Suto, H., Kaneko, Y., Hamazaki, T. (2006) The instrumentation and the BBM test results of thermal and near-infrared sensor for carbon observation (TANSO) on GOSAT. Proc, SPIE, 6297, Infrared Spaceborne Remote Sensing, XIV.
  15. Lamsal, L.N., Martin, R.V., van Donkelaar, A., Celarier, E.A., Bucsela, E.J., Boersma, K.F., Dirksen, R., Luo, C., Wang, Y. (2010) Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: insight into the seasonal variation of nitrogen oxides at northern midlatitudes. Journal of Geophysical Research 115, doi:10.1029/2009JD013 351.
  16. Maksyutov, S., Kadygrov, N., Nakatsuka, Y., Patra, P.K., Nakazawa, T., Yokota, T., Inoue, G. (2008) Projected impact of the GOSAT observatio on regional $CO_2$ flux estimation as a function of total retrieval error. Journal of Remote Sensing Society of Japan 28, 190-197.
  17. Matsueda, H., Machida, T., Sawa, Y., Nakagawa, Y., Hirotani, K., Ikeda, H., Kondo, N., Goto, K. (2008) Evaluation of atmospheric $CO_2$ measurements from new flask air sampling of JAL airliner observations. Papers in Meteorology and Geophysics 59, 1-17. https://doi.org/10.2467/mripapers.59.1
  18. Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P.O., Toon, G.C., Wunch, D., Roehl, C.M., Notholt, J., Warneke, T., Messerschmidt, J., Griffith, D.W.T., Deutscher, N.M., Sherlock, V., Connor, B., Robinson, J., Sussmann, R., Rettinger, M. (2011) Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques 4, 1061-1076.
  19. Nassar, R., Jones, D.B.A., Kulawik, S.S., Worden, J.R., Bowman, K.W., Andres, R.J., Suntharalingam, P., Chen, J.M., Brenninkmeijer, C.A.M., Schuck, T.J., Conway, T.J., Worthy, D.E. (2011) Inverse modeling of $CO_2$ sources and sinks using satellite observations of $CO_2$ from TES and surface flask measurements. Atmospheric Chemistry and Physics 11, 6029-6047. https://doi.org/10.5194/acp-11-6029-2011
  20. Nassar, R., Jones, D.B.A., Suntharalingam, P., Chen, J.M., Andres, R.J., Wecht, K.J., Yantosca, R.M., Kulawick, S.S., Bowman, K.W., Worden, J.R., Machida, T., Matsueda, H. (2010) Modeling global atmospheric $CO_2$with improved emission inventories and $CO_2$ production from the oxidation of other carbon species. Geoscientific Model Development 3, 689-716. https://doi.org/10.5194/gmd-3-689-2010
  21. O'Dell, C.W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Crisp, D., Eldering, A., Fisher, B., Gunson, M., McDuffie, J., Miller, C.E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G.C., Wennberg, P.O., Wunch, D. (2011) The ACOS $CO_2$ retreival algorithm-Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techiques Discussions 4, 6097-6158, doi:10.5194/ amtd-4-6097-2011.
  22. Olsen, E.T., Chahine, M.T., Chen, L., Jiang, X., Pagano, T., Yung, Y.L. (2008) Validation of AIRS retrievals of CO2 via comparison to in situ measurements. EOS Transactions American Geophysical Union 89, A32B-04, Dec 15-19, 2008.
  23. Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., Klooster, S.A. (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycle 7, 811-841. https://doi.org/10.1029/93GB02725
  24. Suntharalingam, P., Jacob, D.J., Palmer, P.I., Logan, J.A., Yantosca, R.M., Xiao, Y., Evans, M.J., Streets, D., Vay, S.A., Sachse, G. (2004) Improved quantification of Chinese carbon fluxes using $CO_2$/CO correlations in Asian outflow. Journal of Geophysical Research 109, D18S18, doi:10.1029/2003JD004362.
  25. Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D.C.E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Nidorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Belille, B., Bates, N.R., de Baar, H.J.W. (2009) Climatological mean and decadal change in surface ocean p$CO_2$, and net sea-air $CO_2$ flux over the global oceans. Deep-Sea Research Pt. II, doi: 10.1016/j.dsr2.2008.12.009.
  26. van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S., Arellano, A.F. Jr. (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6, 3423-3441. https://doi.org/10.5194/acp-6-3423-2006
  27. World Meteorological Organization (WMO) (2009) Technical Report of Global Analysis Method for Greenhouse Gases by the World Data Center for Greenhouse Gases.
  28. Wunch, D., Toon, G.C., Wennberg, P.O., Wofsy, S.C., Stephens, B.B., Fischer, M.L., Uchino, O., Abshire, J.B., Bernath, P., Biraud, S.C., Blavier, J.-F.L., Boone, C., Bowman, K.P., Browell, E.V., Campos, T., Conner, B.J., Daube, B.C., Deutscher, N.M., Diao, M., Elkins, J.W., Gerbig, C., Gottlieb, E., Griffith, D.W.T., Hurst, D.F., Jimenez, R., Keppel-Aleks, G., Kort, E.A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S.J. Robinson, J., Roehl, C.M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., Zondlo, M.A. (2010) Calibration of the total carbon column observing network using aircraft profile data. Atmospheric Measurement Techniques 3, 1351-1362, doi:10.5194/amt-3-1351-2010.
  29. Wunch, D., Wennberg, P.O., Toon, G.C., Connor, B.J., Fisher, B., Osterman, G.B., Frankenberg, C., Mandrake, L., O'Dell, C., Ahonen, P., Biraud, S.C., Castano, R., Cressie, N., Crisp, D., Deutscher, N.M., Eldering, A., Fisher, M.L., Griffith, D.W.T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö, E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messerschmidt, J., Miller, C.E., Morino, I., Notholt, J., Oyafuso, F.A., Rettinger, M., Robinson, J., Roehl, C.M., Salawitch, R.J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson, D.R., Uchino, O., Warneke, T., Wofsy, S.C. (2011) A method for evaluating bias in global measurements of CO2 total columns from space. Atmospheric Chemistry and Physics 11, 10765-10777. https://doi.org/10.5194/acp-11-10765-2011
  30. Yevich, R., Logan, J.A. (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycle 17(4), 1095. https://doi.org/10.1029/2002GB001952
  31. Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S. (2009) Global concentration of $CO_2$ and $CH_4$ retrieved from GOSAT: First Preliminary Results. SOLA 5, 160-163, doi:10.2151/sola.2009-041.
  32. Yoshida, Y., Eguchi, N., Ota, Y., Kikuchi, N., Nobuta, K., Aoki, T., Yokota, T. (2010) Algorithm theoretical basis document (ATBD) for $CO_2$ and $CH_4$ column amounts retrieval from GOSAT TANSO-FTS SWIR. NIES, GOSAT project Document (NIES-GOSAT-PO-014) Version 1.0.
  33. Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., Yokota, T. (2011) Retrieval algorithm for $CO_2$ and $CH_4$ column aboundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite. Atmospheric Measurement Techniques 4, 717-734, doi:10.5194/amt-4-717-2011.

Cited by

  1. Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula vol.31, pp.6, 2015, https://doi.org/10.7780/kjrs.2015.31.6.5
  2. GOSAT으로 추적된 동북아시아 이산화탄소 유동방향의 계절별 비교평가 vol.20, pp.5, 2012, https://doi.org/10.12672/ksis.2012.20.5.001
  3. Analysis of Long-Range Transport of Carbon Dioxide and Its High Concentration Events over East Asian Region Using GOSAT Data and GEOS-Chem Modeling vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/680264
  4. Sensitivity of the simulated CO2 concentration to inter-annual variations of its sources and sinks over East Asia vol.10, pp.4, 2011, https://doi.org/10.1016/j.accre.2020.03.001
  5. Spatiotemporal Variations and Uncertainty in Crop Residue Burning Emissions over North China Plain: Implication for Atmospheric CO2 Simulation vol.13, pp.19, 2011, https://doi.org/10.3390/rs13193880