Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment

종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향

  • Lee, Hyeon-Ji (Department of Atmospheric Sciences, Kyungpook National University) ;
  • Kim, Ki-Byung (Department of Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Junhong (Max Planck Institute for Meteorology) ;
  • Shin, Hyeyum Hailey (National Center for Atmospheric Research) ;
  • Chang, Eun-Chul (Department of Atmospheric Science, Kongju National University) ;
  • Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lim, Kyo-Sun Sunny (Department of Atmospheric Sciences, Kyungpook National University)
  • 이현지 (경북대학교 대기과학과) ;
  • 김기병 (경북대학교 대기과학과) ;
  • 이준홍 (막스플랑크 기상연구소) ;
  • 신혜윰 (미국국립대기연구센터) ;
  • 장은철 (공주대학교 대기과학과) ;
  • 임종명 (한국원자력연구원 원자력환경실) ;
  • 임교선 (경북대학교 대기과학과)
  • Received : 2022.02.23
  • Accepted : 2022.03.24
  • Published : 2022.06.30


This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.



본 연구는 한국원자력연구원 주요사업의 지원을 받아 수행되었습니다(과제번호: 1711139310).


  1. An, H. Y., Y.-H. Kang, S.-K. Song, J.-H. Bang, and Y.-K. Kim, 2015: Atmospheric dispersion of radioactive material according to the local wind patterns around the Kori Nuclear Power Plant using WRF/HYSPLIT model. J. Environ. Sci. Int., 24, 81-96, doi:10.5322/JESI.2015.24.1.81 (in Korean with English abstract).
  2. Banks, R. F., J. Tiana-Alsina, J. M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res., 176, 185-201, doi:10.1016/j.atmosres.2016.02.024.
  3. Byon, J.-Y., Y.-J. Choi, and B.-K. Seo, 2010: Characteristics of a wind map over the Korean Peninsula based on mesoscale model WRF. Atmosphere, 20, 195-210 (in Korean with English abstract).
  4. Byun, U.-Y., S.-Y., Hong, H. Shin, J.-W. Lee, J.-I. Song, S.-J. Hahm, J.-K. Kim, H.-W. Kim, and J.-S. Kim, 2011: WRF-based short-range forecast system of the Korea Air Force: Verification of prediction skill in 2009 summer. Atmosphere, 21, 197-208, doi:10.14191/Atmos.2011.21.2.197 (in Korean with English abstract).
  5. Chang, J. C., P. Franzese, K. Chayantrakom, and S. R. Hanna, 2003: Evaluations of CALPUFF, HPAC, and VLSTRACK with two mesoscale field datasets. J. Appl. Meteor. Climatol., 42, 453-466.<0453:EOCHAV>2.0.CO;2
  6. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.<0569:CAALSH>2.0.CO;2
  7. Choi, G.-S., J.-M. Lim, K.-S. S. Lim, K.-H. Kim, and J.-H. Lee, 2018: Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model. Nucl. Eng. Technol., 50, 68-79, doi:10.1016/
  8. Harman, I. N., and J. J. Finnigan, 2007: A simple unified theory for flow in the canopy and roughness sublayer. Bound.-Lay. Meteorol., 123, 339-363.
  9. Harman, I. N., and J. J. Finnigan, 2008: Scalar concentration profiles in the canopy and roughness sublayer. Bound.-Lay. Meteorol., 129, 323-351.
  10. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  11. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc., 136, 1481-1496, doi:10.1002/qj.665.
  12. Hong, S.-Y., and J.-W. Lee, 2009: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818-831.
  13. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
  14. Hu, X-M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10490-10505, doi:10.1002/jgrd.50823.
  15. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103, doi:10.1029/2008JD009944.
  16. Jimenez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300-316, doi:10.1175/JAMCD-11-084.1.
  17. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor., 43, 170-181.<0170:TKCPAU>2.0.CO;2
  18. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.<2784:AODEPM>2.0.CO;2
  19. Kim, D. Y., and K. S. Han, 2012: Temporal and spatial wind information production and correction algorithm development by land cover type over the Republic of Korea. Kor. Soc. Geospatial Inf. Sci., 20, 19-27, doi:10.7319/kogsis.2012.20.3.019 (in Korean with English abstract).
  20. Kim, J.-Y., D.-Y. Kim, J.-H. Oh, S. H. Kim, H.-G. Kim, Y.-H. Kang, J.-J. Kim, and C.-H. Cho, 2015: Sensitivity evaluation of surface wind simulations by surface drag parameterization and spatial resolution using WRF model. J. Wind Engin. Ins. Korea, 19, 77-83 (in Korean with English abstract).
  21. Lee, J.-W., and S.-Y. Hong, 2006: A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model. Atmosphere, 16, 319-332 (in Korean with English abstract).
  22. Lee, H.-W., W.-B. Jeon, S.-H. Lee, and H.-J. Choi, 2008: Analysis of numerical meteorological fields due to the detailed surface data in complex coastal area. J. Kor. Soc. Atmos. Environ., 24, 649-661 (in Korean with English abstract).
  23. Lee, S.-H., and S.-H. Yun, 2011: Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. J. Kor. Earth Sci. Soc., 32, 360-372, doi:10.5467/JKESS.2011.32.4.360 (in Korean with English abstract).
  24. Lee, J., J. Hong, Y. Noh, and P. A. Jimenez, 2020: Implementation of a roughness sublayer parameterization in the Weather Research and Forecasting model (WRF version 3.7. 1) and its evaluation for regional climate simulations. Geosci. Model Dev., 13, 521-536, doi:10.5194/gmd-13-521-2020.
  25. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.
  26. Lim, K.-S. S., J.-M. Lim, H. H. Shin, J. Hong, Y.-Y. Ji, and W. Lee, 2019: Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model. Meteor. Atmos. Phys., 131, 975-985, doi:10.1007/s00703-018-0615-4.
  27. Lim, K.-S. S., J. M. Lim, J. Lee, and H. H. Shin, 2021: Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system. Nucl. Eng. Technol., 53, 244-252, doi:10.1016/
  28. Lorente-Plazas, R., P. A. Jimenez, J. Dudhia, and J. P. Montavez, 2016: Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model. Mon. Wea. Rev., 144, 2685-2693.
  29. Mass, C., and D. Ovens, 2010: WRF model physics: problems, solutions, and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, 49 pp. [Available online at].
  30. Mass, C., and D. Ovens, 2011: Fixing WRF's high speed wind bias: a new subgrid scale drag parameterization and the role of detailed verification. Preprints, 24th Conference on Weather and Forecasting/20th Conference on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 9B.6. [Available online at].
  31. Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 4773-4798.
  32. Ngan, F., H. Kim, P. Lee, K. Al-Wali, and B. Dornblaser, 2013: A study of nocturnal surface wind speed overprediction by the WRF-ARW model in southeastern Texas. J. Appl. Meteor. Climatol., 52, 2638-2653, doi:10.1175/JAMC-D-13-060.1.
  33. Park, H.-H., J. Lee, E.-C. Chang, and M. Joh, 2019: High-resolution simulation of snowfall over the Korean eastern coastal region using WRF model: Sensitivity to domain nesting-down strategy. Asia-Pac. J. Atmos. Sci., 55, 493-506, doi:10.1007/s13143-019-00108-x.
  34. Seo, B.-K., J.-Y. Byon, and Y.-J. Choi, 2010: Sensitivity evaluation of wind fields in surface layer by WRF-PBL and LSM parameterizations. Atmosphere, 20, 319-332 (in Korean with English abstract).
  35. Shimada, S., T. Ohsawa, S. Chikaoka, and K. Kozai, 2011: Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. SOLA, 7, 109-112, doi:10.2151/sola.2011-028.
  36. Skamarock, W. C., and Coauthors, 2019: A description of the advanced research WRF model version 4.1. Tech. Rep. NCAR/TN-556+STR, 145 pp.
  37. Yang, C.-H., Y. S. Koo, I. S. Kim, and J.-G. Sung, 2013: Studies on the methodology of a hybrid model for emission dispersion analysis. J. Kor. Soc. Transport., 31, 69-79, doi:10.7470/jkst.2013.31.2.069 (in Korean with English abstract).