Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System

KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화

  • Lee, Sihye (Korea Institute of Atmospheric Prediction Systems) ;
  • Kwon, In-Hyuk (Korea Institute of Atmospheric Prediction Systems) ;
  • Kang, Jeon-Ho (Korea Institute of Atmospheric Prediction Systems) ;
  • Chun, Hyoung-Wook (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Seol, Kyung-Hee (Korea Institute of Atmospheric Prediction Systems) ;
  • Jeong, Han-Byeol (Korea Institute of Atmospheric Prediction Systems) ;
  • Kim, Won-Ho (Korea Institute of Atmospheric Prediction Systems)
  • 이시혜 (차세대수치예보모델개발사업단) ;
  • 권인혁 (차세대수치예보모델개발사업단) ;
  • 강전호 (차세대수치예보모델개발사업단) ;
  • 전형욱 (기상청 수치모델링센터) ;
  • 설경희 (차세대수치예보모델개발사업단) ;
  • 정한별 (차세대수치예보모델개발사업단) ;
  • 김원호 (차세대수치예보모델개발사업단)
  • Received : 2021.11.09
  • Accepted : 2022.02.11
  • Published : 2022.03.31


The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.



본 연구에 도움을 주신 (재)차세대수치예보모델개발사업단의 Adam Clayton과 한현준 연구원에게 감사드립니다. 본 연구는 기상청 출연사업인 (재)차세대수치예보모델개발사업단의 4차원 고품질 기상분석을 위한 최신 자료동화기술 개발(KMA2020-02211)의 지원을 받아 수행되었음.


  1. Baars, H., A. Herzog, B. Heese, K. Ohneiser, K. Hanbuch, J. Hofer, Z. Yin, R. Engelmann, and U. Wandinger, 2020: Validation of Aeolus wind products above the Atlantic Ocean. Atmos. Meas. Tech., 13, 6007-6024, doi:10.5194/amt-13-6007-2020.
  2. Choi, S. J., and S. Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.
  3. Durand, Y., E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, 2006: ALADIN airborne demonstrator: a Doppler Wind lidar to prepare ESA's ADM-Aeolus Explorer mission. Proc. SPIE 6296, Earth Observing Systems XI, 62961D, doi:10.1117/12.680958.
  4. Hagelin, S., R. Azad, M. Lindskog, H. Schyberg, and H. Kornich, 2021: Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie-Arome. Atmos. Meas. Tech., 14, 5925-5938, doi:10.5194/amt-14-5925-2021.
  5. Haiden, T., M. Janousek, J. Bidlot, L. Ferranti, F. Prates, F. Vitart, P. Bauer, and D. S. Richardson, 2016: Evaluation of ECMWF forecasts, including the 2016 resolution upgrade. ECMWF Tech. Memo. No.792, 53 pp, doi:10.21957/vltarm3ql.
  6. Jarque, C. M., and A. K. Bera, 1987: A test for normality of observations and regression residuals. Int. Stat. Rev., 55, 163-172.
  7. Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, 303-318, doi:10.1007/s13143-018-0030-2.
  8. Lee, E.-H., J. Lee, and I.-J. Choi, 2016: Verification of the medium-range forecasts of KIAPS integrated model. Abstract, EGU General Assembly 2016, Vienna, Austria, EPSC2016-11706 [Available online at].
  9. Lee, S., and H.-J. Song, 2018: Impacts of LEOGEO Atmospheric Motion Vectors on East Asian weather forecasts. Q. J. R. Meteorol. Soc., 144, 1914-1925, doi:10.1002/qj.3392.
  10. Marseille, G. J., and A. Stoffelen, 2003: Simulation of wind profiles from a space-borne doppler wind lidar. Q. J. R. Meteorol. Soc., 129, 3079-3098.
  11. Martin, A., M. Weissmann, O. Reitebuch, M. Rennie, A. Geiss, and A. Cress, 2021: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents. Atmos. Meas. Tech., 14, 2167-2183, doi:10.5194/amt-14-2167-2021.
  12. Reitebuch, O., D. Huber, and I. Nikolaus, 2014: ADM-Aeolus Algorithm Theoretical Basis Document ATBD Level 1B Products. AE-PR-DLR-L1B-001, 117 pp [Available online at].
  13. Rennie, M. P., and L. Isaksen, 2020: The NWP impact of Aeolus Level-2B Winds at ECMWF. ECMWF Tech. Memo. No. 864, 110 pp.
  14. Rennie, M. P., L. Isaksen, F. Weiler, J. de Kloe, T. Kanitz, and O. Reitebuch, 2021: The impact of Aeolus wind retrievals on ECMWF global weather forecasts. Q. J. R. Meteorol. Soc., 147, 3555-3586, doi:10.1002/qj.4142.
  15. Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubed-sphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.
  16. Song, H.-J., J. Kwun, I.-H. Kwon, J.-H. Ha, J.-H. Kang, S. Lee, H.-W. Chun, and S. Lim, 2017: The impact of the nonlinear balance equation on a 3D-Var cycle during an Australian-winter month as compared with the regressed wind-mass balance. Q. J. R. Meteorol. Soc., 143, 2036-2049, doi:10.1002/qj.3065.
  17. Stoffelen, A., and Coauthors, 2005: The Atmospheric Dynamics Mission for global wind field measurement. Bull. Amer. Meteor. Soc., 86, 73-87.
  18. Sung, K., H.-J. Song, and I.-H. Kwon, 2020: A local unscented transform Kalman filter for nonlinear systems. Mon. Wea. Rev., 148, 3243-3266, doi:10.1175/MWR-D-19-0228.1.