DOI QR코드

DOI QR Code

Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer

도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의

  • Park, Kyeongjoo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Han, Beom-Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Jin, Han-Gyul (School of Earth and Environmental Sciences, Seoul National University)
  • 박경주 (서울대학교 지구환경과학부) ;
  • 한범순 (세명대학교 바이오환경공학과) ;
  • 진한결 (서울대학교 지구환경과학부)
  • Received : 2021.07.07
  • Accepted : 2021.08.24
  • Published : 2021.09.30

Abstract

Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.

Keywords

References

  1. Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1-26, doi:10.1002/joc.859.
  2. Bang, J.-H., M.-K. Hwang, Y. Kim, J. Lee, and I. Oh, 2020: High-resolution meteorological simulation using WRF-UCM over a coastal industrial urban area. J. Environ. Sci. Int., 29, 45-54, doi:10.5322/JESI.2020.29.1.45 (in Korean with English abstract).
  3. Bornstein, R. D., and D. S. Johnson, 1977: Urban-rural wind velocity difference. Atmos. Environ., 11, 597-604, doi:10.1016/0004-6981(77)90112-3.
  4. Byon, J.-Y., Y.-J. Choi, and B.-G. Seo, 2010: Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul, Atmosphere, 20, 13-26 (in Korean with English abstract).
  5. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  6. Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.
  7. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
  8. Fortuniak, K., K. Klysik, and J. Wibig, 2006: Urban-rural contrasts of meteorological parameters in Lodz. Theor. Appl. Climatol., 84, 91-101, doi:10.1007/s00704-005-0147-y.
  9. Han, B.-S., J.-J. Baik, and K.-H. Kwak, 2019: A preliminary study of turbulent coherent structures and ozone air quality in Seoul using the WRF-CMAQ model at 50 m grid spacing. Atmos. Environ., 218, 117012, doi:10.1016/j.atmosenv.2019.117012.
  10. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J Korean Meteor. Soc., 42, 129-151.
  11. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
  12. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  13. Kim, D.-J., D.-I. Lee, J.-J. Kim, M.-S. Park, and S.-H. Lee, 2020: Development of a building-scale meteorological prediction system including a realistic surface heating. Atmosphere, 11, 67, doi:10.3390/atmos11010067.
  14. Kim, H.-O., and J.-M. Yeom, 2012: Effect of the urban land cover types on the surface temperature: Case study of Ilsan new city. Korean J. Remote Sens., 28, 203-214, doi:10.7780/kjrs.2012.28.2.203 (in Korean with English abstract).
  15. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Lay. Meteorol., 101, 329-358, doi:10.1023/A:1019207923078.
  16. Lee, C.-B., J.-C. Kim, and Y.-J. Jang, 2012: A study of urban heat island in Chuncheon using WRF model and field measurements. J. Korean Soc. Atmos. Environ., 28, 119-130, doi:10.5572/KOSAE.2012.28.2.119 (in Korean with English abstract).
  17. Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Lay. Meteorol., 126, 73-102, doi: 10.1007/s10546-007-9221-6.
  18. Lee, S.-H., and S.-T. Kim, 2015: Estimation of anthropogenic heat emission over Sou th Korea u sing a statistical regression method. Asia-Pac. J. Atmos. Sci., 51, 157-166, doi:10.1007/s13143-015-0065-6.
  19. Lee, S.-H., H. Lee, S.-B. Park, J.-W. Woo, D.-I. Lee, and J.-J. Baik, 2016: Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: Numerical investigation using a coupled WRF-VUCM model. Q. J. R. Meteorol. Soc., 142, 2562-2578, doi:10.1002/qj.2847.
  20. Lindberg, F., C. S. B. Grimmond, N. Yogeswaran, S. Kotthaus, and L. Allen, 2013: Impact of city changes and weather on anthropogenic heat flux in Europe 1995-2015. Urban Clim., 4, 1-15, doi:10.1016/j.uclim.2013.03.002.
  21. Littlefair, P., 2001: Daylight, sunlight and solar gain in the urban environment. Sol. Energy, 70, 177-185, doi: 10.1016/S0038-092X(00)00099-2.
  22. Liu, R., Z. Han, J. Wu, Y. Hu, and J. Li, 2017: The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime. Atmos. Res., 197, 167-176, doi:10.1016/j.atmosres.2017.07.006.
  23. Loughner, C. P., D. J. Allen, D.-L. Zhang, K. E. Pickering, R. R. Dickerson, and L. Landry, 2012: Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Climatol., 51, 1775-1793, doi:10.1175/JAMCD-11-0228.1.
  24. Marciotto, E. R., A. P. Oliveira, S. R. Hanna, 2010: Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build. Environ., 45, 2497-2505, doi: 10.1016/j.buildenv.2010.05.012.
  25. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer. Meteorol., 94, 357-397, doi:10.1023/A:1002463829265.
  26. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663-16682, doi: 10.1029/97JD00237.
  27. Oke, T. R., 1982: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108, 1-24, doi:10.1002/qj.49710845502.
  28. Park, M.-S., and Coauthors, 2020: A building-block urban meteorological observation experiment (BBMEX) campaign in central commercial area in Seoul. Atmosphere, 11, 299, doi:10.3390/atmos11030299.
  29. Ryu, Y.-H., and J.-J. Baik, 2012: Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteor. Climatol., 51, 842-854, doi:10.1175/JAMC-D-11-098.1.
  30. Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784-801, doi:10.1175/JAMC-D-12.0157.1.
  31. Ryu, Y.-H., and J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773-1794, doi:10.1175/2011JAMC2665.1.
  32. Ryu, Y.-H., E. Bou-Zeid, Z.-H. Wang, and J. A. Smith, 2016: Realistic representation of trees in an urban canopy model. Bound.-Layer. Meteorol., 159, 193-220, doi: 10.1007/s10546-015-0120-y.
  33. Schrijvers, P. J. C., H. J. J. Jonker, S. R. de Roode, and S. Kenjeres, 2020: On the daytime micro-climatic conditions inside an idealized 2D urban canyon. Build. Environ., 167, 106427, doi:10.1016/j.buildenv.2019.106427.
  34. Shashua-Bar, L., Y. Tzamir, and M. E. Hoffman, 2004: Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. Int. J. Climatol., 24, 1729-1742, doi:10.1002/joc.1092.
  35. Skamarock, W. C., and Coauthors, 2019: A Description of the Advanced Research WRF Model Version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 145 pp, doi:10.5065/1dfh-6p97.
  36. Theeuwes, N. E., G. J. Steenveld, R. J. Ronda, B. G. Heusinkyeld, L. W. A. van Hove, and A. A. M. Holtslag, 2014: Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q. J. R. Meteorol. Soc., 140, 2197-2210, doi:10.1002/qj.2289.
  37. UNDESA, 2019: World Urbanization Prospects: The 2018 revision. United Nations Department of Economic and Social Affairs, 103 pp [Available online at https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf].
  38. Wang, Z.-H., E. Bou-Zeid, S. K. Au, and J. A. Smith, 2011: Analyzing the sensitivity of WRF's single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 1795-1814, doi:10.1175/2011JAMC2685.1.
  39. Yang, J., M. Menenti, E. S. Kravenhoff, Z. Wu, Q. Shi, and X. Ouyang, 2019: Parameterization of urban sensible heat flux from remotely sensed surface temperature: Effects of surface structure. Remote Sens., 11, 1347, doi:10.3390/rs11111347.
  40. Yang, P., G. Ren, and W. Hou, 2017: Temporal-spatial patterns of relative hu midity and the u rban dryness island effect in Beijing city. J. Appl. Meteor. Climatol., 56, 2221-2237, doi:10.1175/JAMC-D-16-0338.1.