DOI QR코드

DOI QR Code

Characteristics of Carbonaceous and Organic Components in PM2.5 over the Yellow Sea

서해상 PM2.5 내 탄소성분 및 유기성분의 화학적 특성

  • Yoo, Ha Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Ki Ae (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • An, Hyunjin (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Yeonjung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Zihui, Teng (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yoo, Hee-Jung (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Jeong Eun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Ko, Hee-Jung (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Sung, Min-Young (Air Quality Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Choi, Jin-Soo (Air Quality Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Park, Jin-Soo (Air Quality Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Lee, Ji Yi (Department of Environmental Science and Engineering, Ewha Womans University)
  • 유하영 (이화여자대학교 환경공학과) ;
  • 김기애 (이화여자대학교 환경공학과) ;
  • 안현진 (고려대학교 지구환경과학과) ;
  • 이연정 (이화여자대학교 환경공학과) ;
  • ;
  • 유희정 (국립기상과학원 미래기반연구부) ;
  • 김정은 (국립기상과학원 미래기반연구부) ;
  • 고희정 (국립기상과학원 미래기반연구부) ;
  • 성민영 (국립환경과학원 대기환경연구과) ;
  • 최진수 (국립환경과학원 대기환경연구과) ;
  • 박진수 (국립환경과학원 대기환경연구과) ;
  • 이지이 (이화여자대학교 환경공학과)
  • Received : 2021.03.29
  • Accepted : 2021.07.06
  • Published : 2021.09.30

Abstract

Characteristics of carbonaceous components and organic compounds in PM2.5 over the atmosphere of the Yellow Sea were investigated. PM2.5 samples were collected onboard the meteorological research vessel, GISANG 1, over the Yellow Sea during the YES-AQ campaign in 2018 and 2019, respectively. The average concentrations of carbonaceous components in this region were 2.59 ± 1.59 ㎍ m-3 for the OC, 0.24 ± 0.10 ㎍ m-3 for the EC, 2.14 ± 1.30 ㎍ m-3 for the WSOC and 1.17 ± 0.94 ㎍ m-3 for the HULIS-C, respectively. The total concentration of 56 organic compounds (ΣOCs) accounts for 10% of OC. The main group among organic compounds were dicarboxylic acids which account for 57% of ΣOCs, followed by n-alkanoic acids accounting for 34% of ΣOCs. In n-alkanoic acid distribution, hexanoic (C6:0) and octanoic (C8:0) acids which are low molecular weight n-alkanoic acids and known as emitted from marine biogenic activities were dominant in this region. Furthermore, non-HULIS-C fraction increased when the air mass originated from the marine region rather than the continental region. When the Asian dust episode was observed, the WISOC concentrations along with the levoglucosan were increased, while the haze episodes caused the increase of WSOC, HULIC-S and DCAs. In this study, we found that the components of carbonaceous and organic aerosols in PM2.5 over the Yellow Sea were changed with the specific air pollution episodes. It indicates that the physicochemical properties of PM2.5 can be changed by the air pollution episodes in this region.

Keywords

References

  1. Birch, M. E., and R. A. Cary, 1996: Elemental carbonbased method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Tech., 25, 221-241, doi:10.1080/02786829608965393.
  2. Cha, J. W., H.-J. Ko, B. Shin, H.-J. Lee, J. E. Kim, B. Ahn, and S.-B. Ryoo, 2016: Characteristics of aerosol mass concentration and chemical composition of the Yellow and South Sea around the Korean Peninsula using a Gisang 1 Research Vessel. Atmosphere, 26, 357-372, doi: 10.14191/Atmos.2016.26.3.357 (in Korean with English abstract).
  3. Cho, C., G. Park, and B. Kim, 2013: An effectiveness of simultaneous measurement of PM10, PM2.5, and PM1.0 concentrations in asian dust and haze monitoring. J. Environ. Sci. Int., 22, 651-666, doi:10.5322/JESI.2013.22.6.651.
  4. Claeys, M., and Coauthors, 2010: Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006-2007. J. Aerosol Sci., 41, 13-22, doi:10.1016/j.jaerosci.2009.08.003.
  5. Decesari, S., and Coauthors, 2011: Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J. Geophys. Res. Atmos., 116, doi:10.1029/2011JD016204.
  6. Godec, R. G., P. P. Kosenka, B. D. Smith, R. S. Hutte, J. V. Webb, and R. L. Sauer, 1991: Total organic carbon analyzer. SAE Transactions, 100, 1248-1259.
  7. Han, Y. M., Z. W. Han, J. J. Cao, J. C. Chow, J. G. Watson, Z. S. An, S. X. Liu, and R. J. Zhang, 2008: Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmos. Environ., 42, 2405-2414, doi:10.1016/j.atmosenv.2007.12.020.
  8. Hatakeyama, S., M. Ohno, J.-H. Weng, H. Takagi, and H. Akimoto, 1987: Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol., 21, 52-57, doi:10.1021/es00155a005.
  9. Hoffer, A., G. Kiss, M. Blazso, and A. Gelencser, 2004: Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water. Geophys. Res. Lett., 31, L06115, doi:10.1029/2003GL018962.
  10. Huang, X.-F., M. Hu, L.-Y. He, and X.-Y. Tang, 2005: Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmos. Environ., 39, 2819-2827, doi:10.1016/j.atmosenv.2004.08.038.
  11. IPCC, 2013: Climate change 2013: the physical science basis. Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
  12. Jung, C. H., J. Y. Lee, J. Um, S. S. Lee, and Y. P. Kim, 2018: Chemical composition based aerosol optical properties according to size distribution and mixture types during smog and Asian dust events in Seoul, Korea. Asia-Pac. J. Atmos. Sci., 54, 19-32, doi:10.1007/s13143-017-0053-0.
  13. Kanakidou, M., and Coauthors, 2005: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys., 5, 1053-1123, doi:10.5194/acp-5-1053-2005.
  14. Kawamura, K., and F. Sakaguchi, 1999: Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. Atmos., 104, 3501-3509, doi:10.1029/1998JD100041.
  15. Kawamura, K., R. Semere, Y. Imai, Y. Fujii, and M. Hayashi, 1996: Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res. Atmos., 101, 18721-18728, doi:10.1029/96JD01541.
  16. Kawamura, K., Y. Ishimura, and K. Yamazaki, 2003: Four years' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem. Cy., 17, 3-1-3-19, doi:10.1029/2001GB001810.
  17. Kim, K.-J., S.-H. Lee, D.-R. Hyeon, H.-J. Ko, W.-H. Kim, and C.-H. Kang, 2014: Composition comparison of PM10 and PM2.5 fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island. Anal. Sci. Technol., 27, 1-10, doi:10.5806/AST.2014.27.1.1 (in Korean with English abstract).
  18. Ko, H.-J., J.-M. Song, J. W. Cha, J. Kim, S.-B. Ryoo, and C.-H. Kang, 2016: Chemical composition characteristics of atmospheric aerosols in relation to haze, Asian dust and mixed haze-Asian dust episodes at Gosan site in 2013. J. Korean Soc. Atmos. Environ., 32, 289-304, doi:10.5572/KOSAE.2016.32.3.289 (in Korean with English abstract).
  19. Kotianova, P., H. Puxbaum, H. Bauer, A. Caseiro, I. L. Marr, and G. Cik, 2008: Temporal patterns of n-alkanes at traffic exposed and suburban sites in Vienna. Atmos. Environ., 42, 2993-3005, doi: 10.1016/j.atmosenv.2007.12.048.
  20. Lee, J. H., Y. P. Kim, K.-C. Moon, H.-K. Kim, and C. B. Lee, 2001: Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmos. Environ., 35, 635-643, doi:10.1016/S1352-2310(00)00378-2.
  21. Lin, P., X.-F. Huang, L.-Y. He, and J. Z. Yu, 2010: Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. J. Aerosol Sci., 41, 74-87, doi:10.1016/j.jaerosci.2009.09.001.
  22. Lukacs, H., and Coauthors, 2007: Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe. J. Geophys. Res. Atmos., 112, D23S18, doi:10.1029/2006JD008151.
  23. Mayol-Bracero, O. L., P. Guyon, B. Graham, G. Roberts, M. O. Andreae, S. Decesari, M. C. Facchini, S. Fuzzi, and P. Artaxo, 2002: Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. Atmos., 107, LBA59-1-LBA59-15, doi:10.1029/2001JD000522.
  24. Mazurek, M. A., and B. R. T. Simoneit, 1984: Characterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural and urban areas. Identif. Anal. Org. Pollut. Air, 353-370.
  25. Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, M. Fukuda, K. Kawamura, M. Mochida, K. Okuzawa, and R. Weber, 2006: Time-resolved measurements of water-soluble organic carbon in Tokyo. J. Geophys. Res. Atmos., 111, D23206, doi:10.1029/2006JD007125.
  26. Paglione, M., and Coauthors, 2014: Identification of humiclike substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. Atmos. Chem. Phys., 14, 25-45, doi:10.5194/acp-14-25-2014.
  27. Park, M., and Coauthors, 2021: Characterization of submicron aerosols over the Yellow Sea measured onboard the Gisang 1 research vessel in the spring of 2018 and 2019. Environ. Pollut., 284, 117180, doi: 10.1016/j.envpol.2021.117180.
  28. Putaud, J.-P., and Coauthors, 2010: A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ., 44, 1308-1320, doi:10.1016/j.atmosenv.2009.12.011.
  29. Rogge, W. F., M. A. Mazurek, L. M. Hildemann, G. R. Cass, and B. R. T. Simoneit, 1993: Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos. Environ. Part A. General Topics, 27, 1309-1330, doi:10.1016/0960-1686(93)90257-Y.
  30. Samburova, V., S. Szidat, C. Hueglin, R. Fisseha, U. Baltensperger, R. Zenobi, and M. Kalberer, 2005: Seasonal variation of high-molecular-weight compounds in the water-soluble fraction of organic urban aerosols. J. Geophys. Res. Atmos., 110, D23210, doi:10.1029/2005JD005910.
  31. Schauer, J. J., W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, 1996: Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ., 30, 3837-3855, doi:10.1016/1352-2310(96)00085-4.
  32. Shilling, J. E., S. M. King, M. Mochida, D. R. Worsnop, and S. T. Martin, 2007: Mass spectral evidence that small changes in composition caused by oxidative aging processes alter aerosol CCN properties. J. Phys. Chem. A, 111, 3358-3368, doi:10.1021/jp068822r.
  33. Simoneit, B. R. T., 1989: Organic matter of the troposphere - V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J. Atmos. Chem., 8, 251-275, doi:10.1007/BF00051497.
  34. Simoneit, B. R. T., and M. A. Mazurek, 1982: Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos. Environ. (1967), 16, 2139-2159, doi:10.1016/0004-6981(82)90284-0.
  35. Simoneit, B. R. T., G. Sheng, X. Chen, J. Fu, J. Zhang, and Y. Xu, 1991: Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos. Environ. Part A. General Topics, 25, 2111-2129, doi:10.1016/0960-1686(91)90088-O.
  36. Xiao, H.-Y., and C.-Q. Liu, 2004: Chemical characteristics of water-soluble components in TSP over Guiyang, SW China, 2003. Atmos. Environ., 38, 6297-6306, doi:10.1016/j.atmosenv.2004.08.033.
  37. Yu, J. Z., H. Yang, H. Zhang, and A. K. H. Lau, 2004: Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics. Atmos. Environ., 38, 1061-1071, doi:10.1016/j.atmosenv.2003.10.049.
  38. Wang, H., K. Kawamura, and K. Yamazaki, 2006: Watersoluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean. J. Atmos. Chem., 53, 43-61, doi: 10.1007/s10874-006-1479-4.