DOI QR코드

DOI QR Code

Water-absorption characteristics and cooked rice texture of milled rice

쌀 수침 중 벼 품종별 수분흡수 특성 및 취반미 물성

  • Choi, Induck (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development of Adminstration (RDA)) ;
  • Oh, You-Geun (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development of Adminstration (RDA)) ;
  • Kwak, Jieun (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development of Adminstration (RDA)) ;
  • Chun, Areum (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development of Adminstration (RDA)) ;
  • Kim, Mi-Jung (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development of Adminstration (RDA)) ;
  • Hyun, WoongJo (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development of Adminstration (RDA))
  • 최인덕 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 오유근 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 곽지은 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 천아름 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김미정 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 현웅조 (농촌진흥청 국립식량과학원 중부작물부)
  • Received : 2021.06.07
  • Accepted : 2021.07.16
  • Published : 2021.08.31

Abstract

A rice (Oryza sativa L.) cultivar of the SPP (stakeholder participatory program) and ordinary rice were characterized based on water-absorption properties and cooked rice texture. During rice soaking, the rice grain transformed from transparent to opaque (white), indicating that water molecules diffused into the rice grain during soaking. In addition, cracks in the internal structure of soaked rice gradually increased with an increase in soaking time. Water absorption increased rapidly up to 20 min, but no increment was observed after 30 min of soaking. At this point, the entire areas of the soaked rice grain turned white, indicating that water absorption had reached saturation. SPP rice showed lower hardness and higher stickiness in its cooked form than ordinary rice, suggesting that SPP rice could be a more preferable choice than ordinary rice. Furthermore, cooked SPP rice was more edible in terms of hardness and stickiness after being kept warm for 12 h than ordinary rice. These results indicated that cooked SPP rice exhibited slow retrogradation and improved taste.

본 연구에서는 지역특화 수요자 참여형 SPP벼 품종이 보급된 지역에서 재배한 알찬미(AM)와 해맑은(HM) 품종과 일반 고품질 밥쌀용 품종을 대상으로 백미 수침 과정에서 미립의 외관 변화를 관찰하고, 수분흡수 특성 및 취반미 물성을 평가하였다. 수침 과정에서 쌀이 수분을 흡수하면서 미립 내부로의 수분 확산 현상으로 인해 투명했던(transparent) 외관이 불투명한(opaque) 상태로 변하여 마치 찹쌀과 같은 뽀얀 흰색을 보였다. 침지 20분 경과 후, 쌀의 50% 정도가 흰색으로 변하였고, 30분 경과된 쌀은 90% 정도가 흰색을 나타내었다. 또한, 수침으로 인해서 쌀 부피가 팽창하고, 미립 내부 구조에서 크랙(crack)이 형성되었는데, 이로 인해 미립 내부에 공간을 확보하여 물의 내부 확산이 가속화되면서 쌀 중심부까지 충분히 수화될 수 있는 것으로 보였다. 수분흡수율은 침지 후, 20분까지 비교적 빠른 속도로 증가하였고, 이후 30분까지는 매우 완만한 증가를 보였다. 30분 이후에는 시간이 경과해도 더 이상 증가하지 않고 일정한 상태를 유지하였으며, 품종별 수분흡수율에서 알찬미가 가장 높은 것으로 나타났다. 쌀 침지 중 색변화 및 크랙 형성은 쌀의 수분흡수율에 현저한 영향을 주는 것으로 사료된다. DSC에 의한 품종별 쌀 전분의 호화 양상은, 해맑은 품종이 호화온도 및 흡열엔탈피(𝚫H)가 낮은 경향으로, 해맑은 품종의 전분 구조의 결정도가 낮고, 호화 상전이에 필요한 에너지양이 적어서, 가열 시 전분의 팽윤이 빠르게 진행되어 밥맛에 영향을 줄 수 있음을 설명한다. 취반미 식감 분석 결과, SPP벼 품종이 밥의 경도는 비교적 낮고, 찰기는 높아서 찰기가 높은 쌀에 대한 선호도가 높은 우리나라의 경우 SPP벼에 대한 소비자 선호도가 높을 것으로 보인다. 또한, 취반 후 일정 시간 보온된 밥의 식감을 평가하기 위해서 취반 직후와 12시간 보온했을 때 평가한 취반미 물성은 SPP벼 품종인 알찬미와 해맑은 취반미가 시간이 경과했을 때 밥의 경도는 낮고, 찰기는 높아서 밥의 식감이 잘 유지되는 것으로 판단되며, 결국 SPP 벼 품종의 취반미 노화 속도도 늦게 진행될 것으로 예측된다.

Keywords

References

  1. AOAC. Official Methods of analysis of AOAC Intl. 18th ed. Association of Official Analytical Chemists, Washington DC, USA (2010)
  2. Bacher OM, Helmintoller KF, Dawson EH. Development and application of methods for evaluating cooking and eating quality of rice. Rice J. 59: 4-8 (1956)
  3. Choi, SY, Shin MS. Properties of rice flours prepared from domestic high amylose rices. Korean J. Food Sci. Technol. 41: 16-20 (2009)
  4. Chun A, Song J, Kim KJ, Kim JH, Son JR, Oh YJ. Sensory and quality evaluation of aseptice-packaged cooked rice by cultivar. Korean J. Crop Sci. 52: 439-446 (2007)
  5. Del Mundo AM. Sensory assessment of cooked milled rice. In: Chemical aspects of rice grain quality. International Rice Research Institute (IRRI). pp. 313-326 (1979)
  6. Hall VL, Johnson JR. A revised starch-iodine blue test for raw milled rice. Cereal Chem. 43: 297-302 (1966)
  7. Hu Z, Yang H, Chaima M, Fang C, Lu L, Hu X. A visualization and quantification method to evaluate the water-absorbing characteristics of rice. Food Chem. 331: 127050 (2020) https://doi.org/10.1016/j.foodchem.2020.127050
  8. Jing LQ, Wang J, Shen SB, Wang YX, Zhu JG, Wang YL. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions. J. Sci. Food Agric. 96: 3658-3667 (2016) https://doi.org/10.1002/jsfa.7545
  9. Juliano BO. Criteria and tests for quality. In: Rice Chemistry and Technology. The American Association of Cereal Chemists, Inc., St. Paul, MN, USA. pp. 443-524 (1985a)
  10. Juliano BO. Polysaccharide, proteins and lipids of rice. In: Rice Chemistry and Technology. The American Association of Cereal Chemists, Inc., St. Paul, MN, USA. pp. 59-174 (1985b)
  11. Juliano BO, Onate LU, del Mundo AM. Relation of starch composition, protein content, and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol. 19: 116-121 (1965)
  12. Kang KJ, Kim K, Kim SK. Relationship between molecular structure of rice amylopectin and texture of cooked rice. Korean J. Food Sci. Technol. 27: 105-111 (1995a)
  13. Kang KJ, Kim K, Kim SK. Structure of hot-water soluble starch in relation to the structure of rice starch and texture of cooked rice. Korean J. Food Sci. Technol. 27: 757-761 (1995b)
  14. Kang KJ, Lho IH. Hydration and hot-water solubilization of milled rice during cooking. Korean J. Food Sci. Technol. 36: 879-884 (1998)
  15. Kesarwani A, Chiang PY, Chen SS. Rapid visco analyzer measurement of japonica rice cultivars to study interrelationship between pasting properties and farming system. Int. J. Agron. 2: 1-6 (2016) https://doi.org/10.1155/2016/3595326
  16. Kim CE, Kang MY, Kim MH. Comparison of properties affecting the palatability of 33 commercial brands of rice. Korean J. Crop Sci. 57: 301-309 (2012) https://doi.org/10.7740/kjcs.2012.57.3.301
  17. Kim HI. Comparison of Korean and Japanese rice cultivars in terms of physicochemical properties (II). The comparison of Korean and Japanese rice by amylose content and cooking characteristics. J. East Asian Soc. Dietary Life 14: 145-155 (2004)
  18. Kim K, Kang KJ, Kim SK. Relationship between hotwater solubles rice and texture of cooked rice. Korean J. Food Sci. Technol. 23: 498-502 (1991)
  19. Kim YD, Ha UG, Song YC, Cho JH, Yang EI, Lee JK. Palatability evaluation and physical characteristics of cooked rice. Korean J. Crop. Sci. 50: 24-28 (2005)
  20. Kum JS, Lee CH, Baek KH, Lee SH, Lee HY. Influence of cultivar on rice starch and cooking properties. Korean J. Food Sci. technol. 27: 365-369 (1995)
  21. Lee S, Lee G. Nutrition of rice and cooked rice. Food Ind. Nutr. 16: 17-21 (2011)
  22. Li C, Luo JX, Zhang CQ, Yu WW. Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture. Food Hydrocolloid. 108: 106064 (2020)
  23. Li HY, Gilbert RG. Strach and molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydr. Polym. 195: 9-17 (2018) https://doi.org/10.1016/j.carbpol.2018.04.065
  24. Martin M, Fitzgerald MA. Proteins in rice grains influence cooking properties. J. Cereal Sci. 36: 285-294 (2002) https://doi.org/10.1006/jcrs.2001.0465
  25. Matveev YI, Van Soestc JJG, Nieman C. Wasserman LA, Protserov VA, Ezernitskaja M, Yuryev VP. The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr. Polym. 44: 151-160 (2001) https://doi.org/10.1016/S0144-8617(00)00211-3
  26. McCleary BV, McNally M, Rossiter P. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study. J. AOAC Int. 85: 1103-1111 (2002) https://doi.org/10.1093/jaoac/85.5.1103
  27. Naito S, Ogawa T. Tensipresser precision in measuring cooked rice adhesiveness. J. Texture Stud. 29: 325-335 (1998) https://doi.org/10.1111/j.1745-4603.1998.tb00174.x
  28. Ohtsubo K. Quality control. In: Rice post-harvest technology. The Food Agency, the Ministry of Agricultural, Forestry and Fisheries, Tokyo, Japan. pp. 475-476 (1995)
  29. Ohtsubo K, Toyoshima H, Okadome H. Quality assay of rice using traditional and novel tools. Cereal Food World 43: 203-206 (1998)
  30. Okabe M. Texture measurements of cooked rice and its relationship to the eating quality. J. Texture Stud. 10: 131-152 (1979) https://doi.org/10.1111/j.1745-4603.1979.tb00241.x
  31. Okadome H, Toyoshima H, Ohtsubo K. Multiple measurements of physical properties of individual cooked rice grains with a single apparatus. Cereal Chem. 76: 855-860 (1999) https://doi.org/10.1094/CCHEM.1999.76.6.855
  32. Park HY, Shin DS, Woo KS, Sim EY, Kim HJ, Lee SK, Won YJ, Lee SB, Oh SK. Mechanical quality evaluation of rice cultivars that could potentially be used to produce processed cooked rice. Korean J. Crop Sci. 61: 145-152 (2016). https://doi.org/10.7740/kjcs.2016.61.3.145
  33. Patindol J, Gu X, Wang YJ. Chemometric analysis of cooked rice texture in relation to starch fine structure and leaching characteristics. Starch-Starke 62: 188-197 (2010) https://doi.org/10.1002/star.200900181
  34. Reddy KR, Ali SZ, Bhattacharya KR. The fine structure of rice starch amylopectin and its relation to the texture of cooked rice. Carbohydr. Polym. 22: 267-275 (1993) https://doi.org/10.1016/0144-8617(93)90130-V
  35. Singh N, Kaur L, Singh SN, Singh SK. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chem. 89: 253-259 (2005) https://doi.org/10.1016/j.foodchem.2004.02.032
  36. Song YC, Lim SJ, Lee JS, Kim HY, Yeo US, Park NB, Kwak DY, Kang JR, Yang SJ, Hwang HG, Oh BG. A new high amylose rice variety "Goamibyeo". Korean J. Breed. Sci. 40: 447-451 (2008)
  37. Takahashi S, Kuno M, Nishizawa K, Kainuma K. New method for evaluation the texture and sensory attributes of cooked rice. J. Appl. Glycosci. 47: 343-353 (2000) https://doi.org/10.5458/jag.47.343
  38. Tang S, Zhang HX, Liu WZ, Dou Z, Zhou QY, Chen WZ. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chem. 277: 455-462 (2019) https://doi.org/10.1016/j.foodchem.2018.10.137
  39. Tomita H, Fukuoka M, Takemori T, Sakai N. Development of the visualization and quantification method of the rice soaking process by using the digital microscope. J. Food Eng. 243: 33-38 (2019) https://doi.org/10.1016/j.jfoodeng.2018.08.034
  40. Tong LT, Zhu R, Zhou X, Zhong K, Wang L, Liu L, Hu X, Zhou S. Soaking time of rice in semidry flour milling was shortened by increasing the grains cracks. J. Cereal Sci. 74: 121-126 (2017) https://doi.org/10.1016/j.jcs.2017.01.011
  41. Uyen TT, Okadome H, Murata M, Homma S, Ohtsubo K. Comparison of Vietnamese and Japanese rice cultivars in terms of physicochemical properties. Food Sci. Technol. Res. 7: 323-330 (2001) https://doi.org/10.3136/fstr.7.323
  42. Wang WQ, He AB, Jiang GL, Sun HJ, Jiang M, Man JG. Ratoon rice technology: A green and resource-efficient way for rice production. Adv. Agron. 159: 135-167 (2020) https://doi.org/10.1016/bs.agron.2019.07.006
  43. Woo HD, We GJ, Kang TY, Shon KH, Chung HW, Yoon MR, Lee JS, Ko S. Physicochemical and gelatinization properties of starches separated from various rice cultivars. J. Food Sci. 80: E2208-E2216 (2015) https://doi.org/10.1111/1750-3841.13071
  44. Yoon MR, Oh SK, Lee JH, Kim DJ, Choi IS, Lee JS, Kim CK. Varietal variation of gelatinization and cooking properties in rice having different amylose contents. Korean J. Food Nutr. 25: 762-769 (2012) https://doi.org/10.9799/ksfan.2012.25.4.762
  45. Yuan RC, Thompson DB, Boyer CD. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbreed lines. Cereal Chem. 70:81-89 (1993)
  46. Zhou Z, Robards K, Helliwell S, Blanchard C. Composition and functional properties of rice. Int. J. Food Sci. Technol. 37: 849-868 (2002) https://doi.org/10.1046/j.1365-2621.2002.00625.x