Specific Surface Area Characteristic Analysis of Porous Carbon Prepared from Lignin-Polyacrylonitrile Copolymer by Activation Conditions

리그닌-PAN 공중합체로 제조한 다공성 탄소 소재의 활성화 처리 조건에 따른 비표면적 특성 연구

  • LEE, Hyunsu (Forest Industrial Materials Division, National Institute of Forest Science) ;
  • KIM, Seokju (Forest Industrial Materials Division, National Institute of Forest Science) ;
  • PARK, Mi-Jin (Forest Industrial Materials Division, National Institute of Forest Science)
  • Received : 2021.04.21
  • Accepted : 2021.05.29
  • Published : 2021.07.25


In this study, we investigated the effect of temperature on specific surface area and electrochemical properties when lignin-based porous carbon (LBPC) with potassium hydroxide (KOH) is activated. After preparing LBPCs using lignin-polyacrylonitrile (PAN) copolymer, which was synthesized by graft polymerizing lignin and acrylonitrile as a precursor, activated LBPCs (KA-LBPC-6, 7, 8, 9) were manufactured by activating LBPC with KOH at 600℃, 700℃, 800℃ and 900℃. To identify the surface characteristics of KA-LBPC, observations were made with a scanning electron microscopy (SEM), and the pore characteristics were identified via specific surface area analysis. The electrochemical properties were analyzed using a three-electrode system. The experiment has shown that micropores formed by activation can be observed in SEM images. KA-LBPC-7 had the best pore characteristics among KA-LBPCs, with a specific surface area of 2480.1 m2/g, a micropore volume of 0.64 cm3/g, and a mesopore volume of 0.76 cm3/g. KA-LBPC-7 showed the best electrochemical properties with a specific capacitance of 151.3 F/g at the scan rate of 2 mV/s.

본 연구에서는 리그닌 기반 다공성 탄소(lignin-based porous carbon; LBPC)를 수산화칼륨(KOH)으로 활성화할 때 온도가 비표면적과 전기화학적 특성에 미치는 영향을 알아보았다. 리그닌과 acrylonitrile을 그라프트 중합으로 합성한 리그닌-polyacrylonitrile (PAN) 공중합체를 전구체로 하여 LBPC를 제조한 후 LBPC를 KOH로 600, 700, 800, 900℃에서 활성화하여 활성화 처리한 LBPC (KA-LBPC-6, 7, 8, 9)를 제조하였다. KA-LBPC의 표면 특성을 알아보기 위해 주사전자현미경으로 관찰하였으며, 비표면적 분석을 통해 기공 특성을 파악하였다. 전기화학적 특성은 3전극 시스템으로 분석하였다. 실험 결과 SEM 사진상에서 활성화 처리에 의한 미세기공 형성을 관찰하였다. KA-LBPC-7의 비표면적은 2480.1 m2/g, 미세기공 부피는 0.64 cm3/g, 중기공 부피는 0.76 cm3/g으로 KA-LBPC 중에서 가장 좋은 기공 특성을 보였다. 전기화학적 특성 역시 2 mV/s의 주사속도에서 비정전용량이 151.3 F/g이었던 KA-LBPC-7이 가장 좋은 것으로 나타났다.


  1. Baker, D.A., Gallego, N.C., Baker, F.S. 2012. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. Journal of Applied Polymer Science 124(1): 227-234.
  2. Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimo-lecular layers. Journal of the American Chemical Society 60(2): 309-319.
  3. Calvo-Flores, F.G., Dobado, J.A. 2010. Lignin as Renewable Raw Material. ChemSusChem 3: 1227-1235.
  4. Conway, B.E. 1999. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Klumer Academic/Plenum Publishers, New York.
  5. Chen, S., Xia, Y., Zhang, B., Chen, H., Chen, G., Tang, S. 2021. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. Journal of Hazardous Materials 408: 124956.
  6. Dutta, S., Bhaumik, A., Wu, K.C.-W. 2014. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy and Environmental Science 7(11): 3574-3592.
  7. Fatriasari, W., Nurhanzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665.
  8. Han, S.-Y., Park, C.-W., Lee, S.-H. 2017. Preparation of lignocellulose nanofiber by mechanical defibrillation after pretreatment using cosolvent of ionic liquid and DMF. Journal of the Korean Wood Science and Technology 45(3): 268-277.
  9. Hatfield-Dodds, S., Schandl, H., Newth, D., Obersteiner, M., Cai, Y., Baynes, T., West, J., Havlik, P. 2017. Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies. Journal of Cleaner Production 144: 403-414.
  10. Hong, C.-Y., Kim, S.-H., Park, S.-Y., Choi, J.-H., Cho, S.-M., Kim, M., Choi, I.-G. 2017. Catabolic pathway of lignin derived-aromatic compounds by whole cell of phanerochaete chrysosporium (ATCC 20696) with reducing agent. Journal of the Korean Wood Science and Technology 45(2): 168-181.
  11. Hur, J.-H., Seo, M.-K., Kim, H.-Y., Kim, I.-J., Park, S.-J. 2012. Influence of KOH activation on electrochemical performance of coal tar pitch-based activated carbons for supercapacitor. Polymer 36(6): 756-760.
  12. Hwang, H., Choi, J.W. 2018, Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17-28.
  13. Ibrahim, M.N.M., Ahmed-Haras, M.R., Sipaut, C.S., Aboul-Enein, H.Y., Mohamed, A.A. 2010. Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydrate Polymers 80(4): 1102-1110.
  14. Jiang, X., Guo, F., Jia, X., Liang, S., Peng, K., Qian, L. 2020. Synthesis of biomass-based porous graphitic carbon combining chemical treatment and hydrothermal carbonization as promising electrode materials for supercapacitors. Ionics 26: 3655-3668.
  15. Jung, M.-K., Kim, S.-K., Jung, D.-H., Peck., D.-H, Shin, J.-H., Shul, Y.-G., Yoon, S.-H. 2007. Characteristics of the catalysts using activated carbon nanofibers with KOH as the support of anode catalyst for direct methanol fuel cell. Carbon Letters 8(1): 37-42.
  16. Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., Griffith, W. 2002. Lignin-based carbon fibers for composite fiber applications. Carbon 40: 2913-2920.
  17. Kang, D., Lee, Y., Park, K.H., Bae, J.S., Jo, S.M., Kim, S.S. 2021. Carbon fibers derived from oleic acidfunctionalized lignin via thermostabilization accelerated by UV irradiation. ACS Sustainable Chemistry & Engineering 9(14): 5204-5216.
  18. Kang, K.H., Kam, S.K., Lee, S.W., Lee, M.G. 2007. Adsorption characteristics of activated carbon prepared from waste ctrus peels by NaOH activation. Journal of the Environmental Sciences 16(11): 1279-1285.
  19. Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J. 2016. Towards lignin-based functional materials in a sustainable world. Green Chemistry 18(5): 1175-1200.
  20. Kim, D., Cheon, J., Kim, J., Hwang, D., Hong, I., Kwon, O.H., Park, W.H., Cho, D. 2017. Extration and characterization of lignin from black liquor and preparation of biomass-based activated carbon there-from. Carbon letters 22: 81-88.
  21. Kim, J.-Y., Heo, S., Park, S.Y., Choi, I.-G., Choi, J.W. 2017. Selective production of monomeric phenols from lignin via two-step catalytic cracking process. Journal of the Korean Wood Science and Technology 45(3): 278-287.
  22. Kim, K.S., Park, S.J. 2011. Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochimica Acta 56(3): 1629-1635.
  23. Kim, S.C., Hong, I.K. 1998. Manufacuring and physical properties of coal based activated carbon. Journal of Korean Society of Environmental Engineers 20(5): 745-754.
  24. Kubo, S., Uraki, Y., Sano, Y. 1998. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7-8): 1119-1124.
  25. Kubo, S., Kadla, J.F. 2005. Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties. Journal of Polymers and the Environment 13(2): 97-105.
  26. Lee, J.-H., Heo, G.-Y., Park, S.-J. 2012. Influence of activation temperature on electrochemical performances of styrenee-acrylonitrile based porous carbons. Polymer(Korea) 36(6): 739-744.
  27. Lili, G., Haiyan, L., Haibo, L., Xiuyun, S., Jianling, X., Dechen, L., Yang, L. 2004. KOH Direct activation for preparing acticated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chemical Research in Chinese Universities 30(3): 441-446.
  28. Lora, J., Glasser, W. 2002. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10(1): 39-48.
  29. Min, C.-H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719.
  30. Nicholson, R.L., Hammerschmidt, R. 1992, Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30(1): 369-389.
  31. Panapoy, M., Dankeaw, A., Ksapabutr, B. 2008. Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method. Thammasat International Journal of Science and Technology 13: 11-17.
  32. Park, S.-J., Kim, B.-J. 2005. Carbon materials for electrochemical capacitors. Carbon Science 6(4): 257-268.
  33. Phiri, J., Dou, J., Vuorinen, T., Gane, P.A.C., Maloney, T.C. 2019. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4(19): 18108-18117.
  34. Qin, W., Kadla, J.F. 2011. Effect of organoclay reinforcement on lignin-based carbon fibers. Industrial and Engineering Chemistry Research 50(22): 12548-12555.
  35. Rambabu, N., Azargohar, R., Dalai, A.K., Adjaye, J. 2013. Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Processing Technology 106: 501-510.
  36. Renders, T., Van den Bosch, S., Koelewijn, S.F., Schutyser, W., Sels, B.F. 2017. Lignin-first biomass fractionation: The advent of active stabilisation strategies. Energy & Environmental Science 10(7): 1551-1557.
  37. Sudo, K., Shimizu, K. 1992. A new carbon fiber from lignin. Journal of Applied Polymer Science 44(1): 127-134.
  38. Suhas, P.J., Carrott, M.M., Carrott, R. 2007. Lignin from natural adsorbent to activated carbon: A review. Bioresource Technology 98(12): 2301-2312.
  39. Wang, Y.G., Song, Y.F., Xia, Y. 2016. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chemical Society Reviews 45(21): 5925-5950.
  40. Wang, Z., Shen, D., Wu, C., Gu, S. 2018. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry 20(22): 5031-5057.
  41. Xia, K., Gao, Q., Jiang, H.J. 2008. Hierachical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13): 1718-1726.
  42. Youe, W.J., Lee, S.M., Lee, S.S., Lee, S.H., Kim, Y.S. 2016. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. International Journal of Biological Macromolecules 82: 497-504.
  43. Youe, W.-J., Kim, S.J., Lee, S.-M., Chun, S.-J., Kang, J., Kim, Y.S. 2018. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors. International Journal of Biological Macromolecules 112: 943-950.
  44. Zhai, Y., Dou, D., Zhao, P.F., Fulvio, R.T., Mayes, Dai, S. 2011, Carbon materials for chemical capacitive energy storage. Advanced Materials 23(42): 4828-4850.
  45. Zhang, Y., Liu, X., Wang, S., Li, L., Dou, S. 2017. Bio- nanotechnology in high-performance supercapacitors. Advanced Energy Materials 7(21): 1700592.