DOI QR코드

DOI QR Code

Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018

2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람

  • Kim, Seok-Hwan (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Jae Gyoo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Kim, Yu-Jin (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
  • 김석환 (강릉원주대학교 대기환경과학과) ;
  • 이재규 (강릉원주대학교 대기환경과학과) ;
  • 김유진 (강릉원주대학교 대기환경과학과)
  • Received : 2021.03.05
  • Accepted : 2021.05.06
  • Published : 2021.06.30

Abstract

A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

Keywords

References

  1. Arakawa, S., 1969: Climatological and dynamical studies on the local strong winds, mainly in Hokkaido, Japan. Geophys. Mag., 34, 349-425.
  2. Back, S.-Y., S.-W. Kim, M.-I. Jung, J.-W. Roh, and S.-W. Son, 2018: Classification of heat wave events in Seoul using self-organizing map. J. Climate Change Res., 9, 209-221, doi:10.15531/KSCCR.2018.9.3.209 (in Korean with English abstract).
  3. Bao, C.-L., 1988: Synoptic Meteorology in China. Springer, 317 pp.
  4. Barry, R. G., 1992: Mountain weather and climate (Physical Environment) 2nd ed. Routledge, 402 pp.
  5. Barry, R. G., 2008: Mountain weather and climate 3rd ed. Cambridge University Press, 532 pp.
  6. Beran, D. W., 1967: Large amplitude lee waves and chinook winds. J. Appl. Meteor. Climatol., 6, 865-877, doi:10.1175/1520-0450(1967)006<0865:LALWAC>2.0.CO;2.
  7. Brinkmann, W. A. R., 1973: A climatological study of strong downslope winds in the Boulder area. NCAR Cooperative Thesis No. 27, INSTARR occasional Paper No. 7, 229 pp.
  8. Brinkmann, W. A. R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 592-602. https://doi.org/10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2
  9. Byun, H. R., H. S. Hwang, and H. Y. Go, 2006: Characteristics and synoptic causes on the abnormal heat occurred at Miryang in 2004. Atmosphere, 16, 187-201 (in Korean with English abstract).
  10. Choi, G., and W.-T. Kwon, 2005: Spatial-temporal patterns and recent changes of tropical night phenomenon in South Korea. J. Korean Geograph. Soc., 40, 730-747 (in Korean with English abstract).
  11. Choi, K-S., and H-R. Byun, 2007: Definition of the onset and withdrawal of the warm season over east Asia and their characteristics. J. Korean. Meteor. Soc., 43. 143-159.
  12. Choi, S.-S., S.-E. Moon, and C.-H. Ha, 1997: Climatological characteristics of the Nopsae wind. J. Korean. Meteor. Soc., 33, 349-361 (in Korean with English abstract).
  13. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
  14. Elvidge, A. D., and I. A. Renfrew, 2016: The causes of foehn warming in the lee of mountains. Bull. Amer. Meteor. Soc., 97, 455-466, doi:10.1175/BAMS-D-14-00194.1.
  15. Ficker, H. V., 1910: Innsbrucker fohnstudien IV. Weitere beitraage zur dynamik des fohns. Denkschr. Kaiserl. Akad. d. Wiss., math.-natwiss. Kl., 85, 114-173.
  16. Gaffin, D. M., 2002: Unexpected warming induced by foehn winds in the lee of the Smoky Mountains. Wea. Forecasting, 17, 907-915, doi:10.1175/1520-0434 (2002)017<0907:UWIBFW>2.0. CO;2.
  17. Hann, J., 1866: Zur frage uber den ursprung des fohn. Z. Osterr. Ges. Meteor., 1, 257-263.
  18. Hann, J., 1867: Der fohn in den osterreichischen Alpen. Z. Osterr. Ges. Meteor., 2, 433-445.
  19. Hann, J., 1901: Lehrbuch der meteorologie. 1st ed. Leipzig, 805 pp.
  20. Ikawa, M., and Y. Nagasawa, 1989: A numerical study of a dynamically induced foehn observed in the Abashiri-Ohmu area. J. Meteor. Soc. Japan, Ser.II, 67, 429-458. https://doi.org/10.2151/jmsj1965.67.3_429
  21. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  22. Kim, H.-G., K.-D. Min, I.-H. Yoon, Y.-S. Moon, and D.-I. Lee, 1998: Characteristics of the extraordinary high temperature events occurred in Summers of 1987 and 1994 over the Korean Peninsula. J. Korean Meteor. Soc., 34, 47-64 (in Korean with English abstract).
  23. Kim, J., D.-G. Lee, and J. Kysely, 2008: A synoptic and climatological comparison of record-breaking heat waves in Korea and Europe. Atmosphere, 18, 355-365 (in Korean with English abstract).
  24. Kim, Y., and M. K. Kim, 2013: A study on foehn over Hongcheon area of Gangwon province in South Korea. J. Korean Geograph. Soc., 48, 37-55 (in Korean with English abstract).
  25. Kim, Y.-S., and S.-G. Hong, 1996: A study of quasi-Fohen in the Youngdong-district in late spring or early summer. J. Korean Meteor. Soc., 32, 593-600 (in Korean with English abstract).
  26. Kondo, J., and T. Kuwagata, 1983: On the unusual dryness and strong wind weather which caused a large number of forest fires over the Tohoku district on 27 April 1983 (Part 1). Tenki, 30, 545-552 (in Japanese).
  27. Kondo, J., and T. Kuwagata, 1984: On the unusual dryness and strong wind weather which caused a large number of forest fires over the Tohoku district on 27 April 1983 (Part 2). Tenki, 31, 37-44 (in Japanese).
  28. KMA, 2018: Press Release. Korea Meteorological Administration, 3 pp [Available online at https://www.kma.go.kr/notify/press/kma_list.jsp?bid=press&mode=view&num=1193576&page=1&field=&text=] (in Korean).
  29. Lee, H.-D., K.-H. Min, J.-H. Bae, and D.-H. Cha, 2020: Characteristics and comparison of 2016 and 2018 heat wave in Korea. Atmosphere, 30, 1-15, doi:10.14191/Atmos.2020.30.1.001 (in Korean with English abstract).
  30. Lee, H.-Y., 1994: The Nopsae; a Foehn type wind over the Young Suh region of central Korea. J. Korean Geograph. Soc., 29, 266-280 (in Korean with English abstract).
  31. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.
  32. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  33. Nishi, A., and H. Kusaka, 2019: Effect of foehn wind on record-breaking high temperature event (41.1℃) at Kumagaya on 23 July 2018. SOLA, 15, 17-21, doi: 10.2151/sola.2019-004.
  34. Park, B. I., 2020: Types and characteristics of the foehn phenomena over the Young-seo region of Central Korea. J. Korean Geograph. Soc., 55, 67-81 (in Korean with English abstract).
  35. Park, W.-S., and M.-S. Suh, 2011: Characteristics and trends of tropical night occurrence in South Korea for recent 50 years (1958-2007). Atmosphere, 21, 361-371, doi:10.14191/Atmos.2011.21.4.361 (in Korean with English abstract).
  36. Pleim, J. E., 2006: A simple, efficient solution of flux-profile relationships in the atmospheric surface layer. J. Appl. Meteor. Climatol., 45, 341-347. https://doi.org/10.1175/JAM2339.1
  37. Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383-1395. https://doi.org/10.1175/JAM2539.1
  38. Pleim, J. E., and R. Gilliam, 2015: Description and Procedures for using the Pleim-Xiu LSM, ACM2 PBL and Pleim Surface Layer Scheme in WRF. 8pp [Available online at https://www2.mmm.ucar.edu/wrf/users/docs/PX-ACM.pdf].
  39. Richner, H., and P. Hachler, 2013: Understanding and forecasting Alpine foehn. In F. Chow et al. Eds., Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, Springer, 219-260.
  40. Scorer, R. S., 1978: Environmental Aerodynamics (Ellis horwood series in mathematics and its applications). Halsted Press, 488 pp.
  41. Scorer, R. S., and H. Klieforth, 1959: Theory of mountain waves of large amplitude. Q. J. R. Meteorol. Soc., 85, 131-143. https://doi.org/10.1002/qj.49708536406
  42. Seibert, P., 1990: South foehn studies since the ALPEX experiment. Meteor. Atmos. Phys., 43, 91-103, doi: 10.1007/BF01028112.
  43. Sharples, J.-J, G. A. Mills, R. H. D. McRae, and R. O. Weber, 2010: Foehn-like winds and elevated fire danger conditions in Southeastern Australia. J. Appl. Meteor. Climatol., 49, 1067-1095, doi:10.1175/2010JAMC2219.1.
  44. Smith, R. B., 1990: Why can't stably stratified air rise over high ground? In R. M. Banta, Eds., Atmospheric processes over Complex Terrain. Amer. Meteor. Soc., 105-107.
  45. Stoelinga, M. T., 2009: A users' guide to RIP version 4.6: A program for visualizing mesoscale model output. NCAR on-line document [Available online at https://a.atmos.washington.edu/~ovens/ripug_uw.html].
  46. Stull, R. B., 1988: An introduction to boundary layer meteorology. Kluwer Academic Publishers, 670 pp.
  47. Stull, R., 2017: Practical Meteorology: An Algebra-based Survey of Atmospheric Science. University of British Columbia, 940 pp.
  48. Takahashi, S., 1996: Foehn phenomenon (numerical calculation). Japan Meteorological Agency Tech. Rep., 118, 179-186 (in Japanese).
  49. Takane, Y., and H. Kusaka, 2011: Formation mechanisms of the extreme high surface air temperature of 40.9℃ observed in the Tokyo metropolitan area: Considerations of dynamic foehn and foehnlike wind. J. Appl. Meteor. Climatol., 50, 1827-1841, doi:10.1175/JAMCD-10-05032.1.
  50. Takane, Y., H. Kusaka, and H. Kondo, 2015: Investigation of a recent extreme high-temperature event in the Tokyo metropolitan area using numerical simulations: the potential role of a 'hybrid' foehn wind. Q. J. R. Meteorol. Soc., 141, 1857-1869, doi:10.1002/qj.2490.
  51. Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 376 pp.
  52. Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 40, 192-209. https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2