Research on Prediction of Consumable Release of Imported Automobile Utilizing System Dynamics - Focusing on Logistics Center of A Imported Automobile Part

시스템다이내믹스를 활용한 수입 자동차 소모품 출고예측에 관한 연구 - A 수입 자동차 부품 물류센터를 중심으로

  • Park, Byooung-Jun (Graduate School of Logistics, Incheon National University) ;
  • Yeo, Gi-Tae (Graduate School of Logistics, Incheon National University)
  • 박병준 (인천대학교 동북아물류대학원) ;
  • 여기태 (인천대학교 동북아물류대학원)
  • Received : 2020.08.12
  • Accepted : 2021.01.20
  • Published : 2021.01.28


Despite the increase in sales of imported vehicles in Korea, research on the sales forecast of parts logistics centers is very limited. This study aims to perform a sales prediction on bestselling goods in the automobile part logistics center. System dynamics was adopted as a methodology for the prediction method, which considered causal relationship of variables that affected the dynamic characteristics and feedback loops. The analysis results showed that the consumable sales amount of oil increased over time. As a result of conducting the MAPE, the model was assessed to be a reasonable predictive model of 31.3%. In addition, the sales of battery products increased from every October in both of actual and predicted data followed by the peak sales in December and then decrease from next February. This study has academic implications that it secured actual data of specific imported automobile part logistics center, which has not done before in previous studies and quantitatively analyzed the prediction of the quantity of released goods of future sales through system dynamics.

국내 수입차량 판매 증가에도 불구하고 부품 물류센터의 판매 예측에 관한 연구는 매우 부족한 현실이다. 이러한 측면에서 본 연구는 부품 물류센터의 상위 판매 상품에 대한 판매 예측을 수행 하는 것을 연구의 목적으로 한다. 연구는 판매 예측에 대한 동적특성과 영향을 주는 변수의 인과관계 및 피드백 루프를 고려할 수 있는 시스템 다이내믹스 방법론을 도입하였다. 연구결과 'Oil'의 경우 시간이 지날수록 소모품 판매 수량이 증가하는 패턴을 보이고, MAPE을 실시한 결과 31.3%의 합리적 예측모델로 평가되었다. 상품 'Battery'의 경우 실제 데이터와 예측 데이터 모두 매년 10월을 기점으로 판매가 증가하여 12월에서 가장 높은 판매를 보이고 다음해 2월부터 감소하는 계절성 판매패턴을 보였다. 본 연구는 기존 연구에는 존재하지 않았던 특정 수입 자동차 부품 물류센터의 실제 데이터를 확보하고, 시스템 다이내믹스를 통하여 미래 판매 물동량 예측을 정량적으로 분석하여 제시하였다는 점에서 학문적 시사점을 갖는다.



  1. J. H. Lee, S. W. Yoon & S. J. Jeong. (2011). A simulation study on the Improvement of Order Picking Operation in C-Automobile Part Distribution Center. Korea Logistics Review, 21(3), 133-155.
  2. H. S. Bang & J. Y. Mo. (2014). A Study on the Logistics Process Obstacles and Scale of the Automotive Part Companies. Korea International Commerce Review, 29(4), 335-357.
  3. H. Y. Jeon & S. H. Woo. (2018). Cost Analysis of Discrepancies between Order Quantity and Packing Unit in Automobile Parts Supply. Korea Logistics Review, 28(5), 11-25. DOI : 10.17825/klr.2018.28.5.11
  4. D. G. Kim. (2020). Last year, domestic car sales of 59 trillion won, 2.9%...Imported car share 28%. Yonhap News.
  5. KAIDA. (2020). Annual data. Seoul : KAIDA.
  6. S. Y. Park. (2019). Mercedes-Benz Korea to invest 35 billion won in parts and logistics centers...twice the size. MBN.
  7. Y. J. Kim. (2017). Open in Anseong, 'BMW Parts and Logistics Center' with 30 times the size of soccer field. Yonhap News.
  8. Financial Supervisory Service. (2020). Audit report. Seoul. Financial Supervisory Service.
  9. B. H. Kim, Y. D. Cha, H. M. Ma & G. T. Yeo. (2017). A study on Operation factors the Used automobile logistics complex using Fuzzy-AHP. Journal of Digital Convergence, 15(7), 97-109. DOI : 10.14400/JDC.2017.15.7.97
  10. S. W. Cho & O. S. Kwon. (2012). A Study on the Relationship of Logistics Resource, Logistics Capability, and Performance in Reverse Logistics. Journal of Industrial Economics and Business, 25(2), 1513-1535.
  11. S. J. Park. (2019). An Integrated Model for Customer Satisfaction and Loyalty in Automobile Industry: The Effects of Perceived Quality of Automobile, Automobile Dealership Service, and Service Center on Customer Satisfaction and Loyalty. Journal of Distribution and Logistics, 6(1), 19-36. DOI : 10.22321/jdl2019060102
  12. Y. A. Jeon & B. Y. Chang. (2018). A study on vehicle sales forecasting. Korean Academic Society Of Business Administration, 2018(8), 746-755.
  13. M. Masoud. (2020). Integrating ABC analysis and rough set theory to control the inventories of distributor in the supply chain of auto spare parts. Computers & Industrial Engineering, 139(1), 1-21. DOI : 10.1016/j.cie.2019.01.047
  14. L. B. Sweeney & J. D. Sterman. (2000). Bathtub dynamics: initial results of a systems thinking inventory. System Dynamics Review: The Journal of the System Dynamics Society, 16(4), 249-286. DOI : 10.1002/sdr.198
  15. G. T. Yeo, S. I. Park, H. J. Jung & J. W. Jeon. (2013). Forecasting the Log Cargo Volumes in Incheon Port using the System Dynamics. Korea Logistics Review, 23(1), 107-122. DOI : 10.5394/KINPR.2012.36.6.521
  16. J. G. Kim. (2011). A Study on forecasting container traffic of port using SD and ARIMA. Master dissertation. Incheon National University, Incheon.
  17. D. J. Lim, H. J. Kim, E. S. Sim & J. W. Park. (2005). A Quantitative Analysis of Automobile Reverse Supply Chain Using System Dynamics. Journal of the Korea Society for Simulation, 2005(5), 40-44.
  18. K. D. Sung. (2017). A Study on the Efficiency of Operating Feeder Ship in Northeast Asia Short Sea using System Dynamics. Master dissertation. Incheon National University, Incheon.
  19. J. S. Choi. (2017). Forecasting Bunker Price Using System Dynamics. Journal of Korea Port Economic Association, 33(1), 75-87.
  20. J. H. Oh & S. H. Woo. (2018). Forecasting Freight Volume of Jeju Port using System Dynamics. Korea Logistics Review, 28(3), 29-40. DOI : 10.17825/klr.2018.28.3.29
  21. H. H. Kim, J. W. Jeon & G. T. Yeo. (2018). Forecasting Model of Air Passenger Demand Using System Dynamics. Journal of Digital Convergence, 16(5), 137-143. DOI : 10.14400/JDC.2018.16.5.137
  22. J. S. Lee & S. Y. Jang. (2012). Development of a Simulation Model to Decide the Proper Target Inventory Level for TOC Replenishment Inventory Management using System Dynamics. Journal of the Korea Society for Simulation, 21(3), 25-33. DOI : 10.9709/JKSS.2012.21.3.025
  23. H. S. Song & J. K. Kim. (2017). Forecasting Multi-Generation Diffusion Demand based on System Dynamics : A Case for Forecasting Mobile Subscription Demand. Korea Data Strategy Society, 24(2), 81-96. DOI : 10.21219/jitam.2017.24.2.081
  24. B. Dyson & N. B. Chang. (2005). IForecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Management, 25(7), 669-679. DOI : 10.1016/j.wasman.2004.10.005
  25. Y. He. J. Jiao. Q. Chen. S. Ge. Y. Chang & Y. Xu. (2017). Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin. Energy, 133(1), 9-22. DOI : 10.1016/
  26. C. D. Lewis. (1982). Industrial and business forecasting methods : A practical guide to exponential smoothing and curve fitting. Butterworth scientific.
  27. Y. Wang. C. C. Chou. & G. T. Yeo. (2013). Application and improvement of a System Dynamics model to forcast the volume of containers. Journal of Applied Science and Engineering, 16(2), 187-196. DOI : 10.6180/jase.2013.16.2.10