Effects of Blooming in Ground Cover on the Pollinator Network and Fruit Production in Apple Orchards

사과원 피복 초생의 개화가 화분매개자 네트워크와 사과 생산에 미치는 영향

  • Son, Min Woong (Department of Plant Medicals, Andong National University) ;
  • Jung, Chuleui (Department of Plant Medicals, Andong National University)
  • 손민웅 (안동대학교 식물의학과) ;
  • 정철의 (안동대학교 식물의학과)
  • Received : 2021.01.29
  • Accepted : 2021.02.24
  • Published : 2021.03.01


Pollinators are not only crucial for plant reproduction, but also important for crop production. These pollinators are affected by the diversity of plants within orchards. Thus, the study investigated the effect of blooming on the ground cover on pollinator diversity, network, fruiting rates and subsequent apple size during harvest season in apple blooming period. Total ten orchards were selected; Five with ground covered mostly by dandelion while the another five without ground cover. The orchards with dandelion bloom showed 16 pollinator groups and 801 pollination network interaction, while 14 pollinator groups and 589 interaction were found from orchards without ground cover blooms. es. Overall pollinators' abundances were not different. But bumble bees and caliphorid flies were more abundant in orchards with ground cover blooming. There was no significant in fruiting rates, but the apple size was significantly bigger in orchards with ground cover. These results may indicate that blooming on the ground cover during apple flowering season would increase pollinator diversity and influence fruit quality later on in apple orchards, and pose importance of floral diversity for sustainable apple production system.


  1. Bennett, J.M., Steets, J.A., Burns, J.H., Burkle, L.A., Vamosi, J.C., Wolowski, M., Arceo-Gomez, G., Burd, M., Durka, W., Ellis, A. G., Freitas, L., Li, J., Rodger, J.G., Stefan, V., Xia, J., Knight, T. M., Ashman, T., 2020. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999.
  2. Calatayud-Vernich, P., Calatayud, F., Simo, E., Suarez-Varela, M. M., Pico, Y., 2016. Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Sci. Total Environ. 541, 33-41.
  3. Carvalheiro, L.G., Biesmeijer, J.C., Benadi, G., Frund, J., Stang, M., Bartomeus, I., Kaiser-Bundury, C.N., Baude, M., Gomes, S.I.F., Merckx, V., Baldock, K.C.R., Bennett, A.T.D., Boada, R., Bommarco, R., Cartar, R., Chacoff, N., Danhardt, J., Dicks, L. V., Dormannm, C.F., Ekroos, J., Henson, K.S.E., Holzschuh, A., Junker, R.R., Mikel, M.L., Memmott, J., Montero-Castano, A., Nelson, I.L., Petanidou, T., Power, E.F., Rundlof, M., Smith, H.G., Stout, J.C., Temitope, K., Tscharntke, T., Tscheulin, T., Vila, M., Kunin, W.E., 2014. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 19, 1389-1399.
  4. Carvalheiro, L.G., Veldtman, R., Shenkute, A.G., Tesfay, G.B., Pirk, C.W.W., Donaldson, J.S., Nicolson, S.W., 2011. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251-259.
  5. Choi, K.B., Lee, H., Jung, C., 2020. Analysis of flower-visiting insect assembly in apple orchards relative to the landscape type measured by yellow pan-traps. J. Apic. 35(1), 21-32.
  6. Choi, S.Y., Kim, Y.S., Lee, M.L., Oh, H.W., Jeong, B.K., 1989. Studies on the acute and chronic toxicities of pesticides to the honeybees, Apis mellifera. J. Apic. 4(2), 85-95.
  7. Cunningham, S.A., 2000. Depressed pollination in habitat fragments causes low fruit set. Proc. R. Soc. B-Biol. Sci. 267, 1149-1152.
  8. Ebeling, A., Klein, A., Schumacher, J., Weisser, W.W., Tscharntke, T., 2008. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808-1815.
  9. Eo, J., Kang, S.B., Park, K.C., Han, K.S., Yi, Y.K., 2010. Effects of cover plants on soil biota: a study in an apple orchard. Korean J. Environ. Agric. 29(3), 287-292.
  10. Fath, B.D., Scharler, U.M., Ulanowicz, R.E., Hannon, B., 2007. Ecological network analysis: network construction. Ecol. Model. 208, 49-55.
  11. Garcia, R.R., Minarro, M., 2014. Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agric. Ecosyst. Environ. 183(15), 118-126.
  12. Garibaldi, L.A., Aizen, M.A., Klein, A.M., Cunningham, S.A., Harder, L.D., 2011. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5909-5914.
  13. Garratt, M.P.D., Breeze, T.D., Jenner, N., Polce, C., Biesmeijer, J. C., Potts, S.G., 2014. Avoiding a bad apple: insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184, 34-40.
  14. Hannon, B., 1973. The structure of ecosystems. J. Theor. Biol. 41, 535-546.
  15. Heo, J.Y., Park, Y.S., Um, N.Y., Park, S.M., 2015. Selection of native ground cover plants for sod culture in an organic apple orchard. Korean J. Plant Res. 28(5), 641-647.
  16. Jauker, F., Wolters, V., 2008. Hover flies are efficient pollinators of oilseed rape. Oecologia 156, 819.
  17. Jeong, J.S., Choi, S.Y., 1988. Diurnal activity of the honeybees on the blosoms of Apple Tree. J. Apic. 3(2), 16-21.
  18. Kim, D.S., Lee J.H., Jeon, H.Y., Yiem, M.S., Kim, K.Y., 1995. Community structure of phytophagous arthropods and their natural enemies at different weed management systems in apple orchards. Korean J. Appl. Entomol. 34(3), 256-265.
  19. Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., 2006. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. B274, 303-313.
  20. Kovacs-Hostyanszki, A., Espindola, A., Vanbergen, A.J., Settele, J., Kremen, C., Dicks, L.V., 2017. Ecological intensification to mitigate impacts of cconventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673-689.
  21. Lee, H.S., Lee, S.W., Ryu, H.K., 2000. The insects foraging on apple orchards in Kyungpook province. J Apic. 15(1), 9-20.
  22. Lee, I.Y., Oh, Y.I., Hong, S.H., Heo, S.J., Lee, C.Y., Park, K.W., Cho, S.H., Kwon, O.D., Im, I.B., Kim, S.K., Seong, D.G., Chung, Y.J., Kim, C.S., Lee, J., Seo, H.A., 2017. Occurrence of weed flora and changes in weed vegetation in orchard fields of Korea. Weed Turf. Sc. 6(1), 21-27.
  23. Lee, K.U., Yoon, H.J., Park, I.G., Kwon, C.R., Lee, S.C., 2010. Survey on the current status of magon bees in apple orchard of Korea. J. Apic. 25(1), 53-61.
  24. Lee, K.Y., Lee, J.A., Han, H.H., Na, D.Y., Kim, S.Y., Yoon, H.J., 2016. The appropriate sex ratio and density of the mason bee (Osmia cornifrons) for apple pollination. J Apic. 31(4), 337-349.
  25. Lee, K.Y., Lee, S.G., Lee, Y.B., Kim, N.J., Kim, J.H., Choi, Y.S., Kang, P.D., Yoon, H.J., 2014. Current status of honeybee production for pollination service in 2013. J. Apic.29(4), 245-256.
  26. Lee, M., Kim, Y., Cho, K., 2018. Exploting community structure and function with network analysis: a case study of Cheonggye stream. Korean J. Environ. Biol. 36(3), 370-376.
  27. Lee, S.B., Lee, K.Y., Yoon, H.J., Park, I.G., Park, H.R., Ha, N.G., Kim, S.R., 2009. Characteristics and effects on pollinating activity according to the release numbers of Osmia cornifrons and O. pedicornis at the apple orchards. J. Apic. 24(4), 219-226.
  28. Lee, S.B., Seo, D.K., Choi, K.H., Lee, S.W., Yoon, H.J., Park, H.C., Lee, Y.D., 2008. The visited insects on apple flowers, and the characteristics on pollinating activity of pollinators released for pollination of apple orchards. J. Apic. 23(4), 275-282.
  29. Lee, Y.B., Chang, S.J., Park, H.C., Kim, M.A., Lee, M.L., 2003. The survey of foraging activities of honey bees (Apis mellifera Linne) and pollination effects on wild plants. J. Apic. 18(2), 117- 126.
  30. Lundin, O., Ward, K.L., Artz, D.R., Boyle, N.K., Pitts-Singer, T.L., Williams, N.M., 2017. Wildflower plantings do not compete with neighboring almond orchards for pollinator visits. Environ. Entomol. 46(3), 559-564.
  31. Margalef, R., 1958. Information theory in ecology. Comput. Chem. 3, 36-71.
  32. Martinez, N.D., 1992. Constant connectance in community food webs. Am. Nat. 139, 1208-1218.
  33. McNaughton, S.J., 1967. Relationships among functional properties of Californian grassland. Nature 216(5111), 168-169.
  34. Memmott, J. Waser, N.M., Price, M.V., 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 271, 2605-2611.
  35. Monotoya, J.M., Pimm, S.L., Sole, R.V., 2006. Ecological networks and their fragility. Nature 442, 259-264.
  36. Norfolk, O., Eichhorn, M.P., Gilbert, F., 2016. Flowering ground vegetation benefits wild pollinators and fruit set of almond within arid smallholder orchards. Insect. Conserv. Divers. 9, 236-243.
  37. Oh, H.W., Lee, M.L., Woo, K.S., 1989. Effect of pollinators on the fruit set of apple and pear trees. J. Apic. 4(2), 11-15.
  38. Olesen, J.M., Jordano, P., 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83, 2416-2424.
  39. Olesen, J.M., Bascompte, J., Dupont, Y.L., Jordano, P., 2007. The modularity of pollination networks. Proc. Natl. Acad. Sci. U. S. A. 104(50), 19891-19896.
  40. Pardo, A., Borges, P.A.V., 2020. Worldwide importance of insect pollination in apple orchards: a review. Agric. Ecosyst. Environ. 293, 106839.
  41. Pielou, E.C., 1975. Ecological diversity. Wiley, New York.
  42. Power, E.F., Stout, J.C., 2011, Organic dairy farming: impacts on insect-flower interaction networks and pollination. J. Appl. Ecol. 48, 561-569.
  43. R Development Core Team, 2020. R; a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna.
  44. Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P.D., Howlett, B.G., Winfree, R., Cunningham, S.A., Mayfield, M.M., Arthur, A.D., Andersson, G.K.S., Bommarco, R., Brittain, C., Carvalheiro, L.G., Chacoff, N.P., Entling, M.H., Foully, B., Freitas, B.M., Gemmill-Herren, B., Ghaxoul, J., Griffin, S.R., Gross, C.L., Herbertsson, L., Herzog, F., Hipolito, J., Jaggar, S., Jauker, F., Klein, A., Kleijn, D., Krishnan, S., Lemos, C.Q., Lindstrom, S.A.M., Mandelik, Y., Monteiro, V.M., Nelson, W., Nilsson, L., Pattemore, D.E., Pereira, N.O., Pisanty, G., Potts, S.G., Reemer, M., Rundlof, M., Sheffield, C.S., Scheper, J., Schuepp, C., Smith, H.G., Stanley, D.A., Stout, J.C., Szentgyorgyi, H., Taki, H., Vergara, C.H., Viana, B.F., Woyciechowski, M., 2016. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U. S. A. 113(1), 146-151.
  45. Sanchez, J.E., Edson, C.E., Bird, G.W., Whalon, M.E., Willson, T. C., Harwood, R.R., Kizikaya, K., Nugent, J.E., Klein, W., Middleton, A., Loudon, T.L., Mutch, D.R., Scrimger, J., 2003. Orchard floor and nitrogen management influences soil and water quality and tart cherry yields. J. Am. Soc. Hortic. Sci. 128(2), 277-284.
  46. Shahbandeh, M., 2020. Global production of fruit by variety selected 2018. (accessed on 11 February, 2020).
  47. Sokal, R.R., Rohlf, F.J., 1995. Biometry: the principles and practice of statistics in biological research. Third edition. W. H. Freeman, New York.
  48. Son, M., Jung, S., Jung, C., 2019. Diversity and interaction of pollination network from agricultural ecosystems during summer. J. Apic. 34(3), 197-206.
  49. Statistics Korea, 2018. (accessed on 18 January, 2021).
  50. Tenhumberg, B., Poehling, H., 1995. Syrphids as natural enemies of cereal aphids in Germany: Aspects of their biology and efficacy in different years and regions. Agric. Ecosyst. Environ. 52(1), 39-43.
  51. Warton, D.I., Hui, F.K.C., 2011. The arcsine is asinine: the analysis of porportions in ecology. Ecology 92(1), 3-10.
  52. Yoon, H.J., Lee, K.Y., Kim, M.A., Park, I.G., Kang, P.D., 2013. Characteristics on pollinating activity of Bombus terrestris and Osmia cornifrons under different weather conditions at apple orchard. J. Apic. 28(3), 163-171.
  53. Yoon, H.J., Lee, K.Y., Park, I.G., Kim, M.A., Kim, Y.M., Kang, P.D., 2012. Current status of insect pollinators use in apple orchards. J. Apic. 27(2), 105-116.