Numerical Evaluation of Dynamic Behavior of Retaining Structure in a Deep Excavation

수치해석을 통한 대심도 흙막이 시설물의 동적 거동 평가

  • Yang, Eui-Kyu (Infra Engrg. Team, GS E&C) ;
  • Yu, Sang-Hwa (SALT eng.) ;
  • Kim, Jong-Kwan (Dept. of Geotechnical Engrg. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Dong-Chan (Dept. of Geotechnical Engrg. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Seok-Jung (Management Planning Division Planning and Coordination Dept., Korea Inst. of Civil Eng. and Building Tech.) ;
  • Han, Jin-Tae (Dept. of Geotechnical Engrg. Research, Korea Inst. of Civil Eng. and Building Tech.)
  • 양의규 (GS건설(주) 인프라ENG팀) ;
  • 유상화 (쏠트이엔지) ;
  • 김종관 (한국건설기술연구원 지반연구본부) ;
  • 김동찬 (한국건설기술연구원 지반연구본부) ;
  • 김석중 (한국건설기술연구원 경영기획실) ;
  • 한진태 (한국건설기술연구원 지반연구본부)
  • Received : 2021.11.24
  • Accepted : 2021.11.29
  • Published : 2021.12.31


In this paper, feasibility study was carried out to evaluate necessity of seismic design of earth retaining structures in a deep excavation. Dynamic behavior of retaining system was analyzed using FLAC, a finite difference analysis program. It was shown that maximum bending moments of retaining walls and axial forces of supports were increased up to 98% and 87% during earthquake, respectively, compared to final excavation step, which indicates that dynamic earth pressure has a large effect on a retaining system. The stability of retaining system designed according to current design specifications was evaluated using structural forces obtained by numerical analysis, and effect of earthquake loading on structural design was analyzed.

본 논문에서는 흙막이 시설물 내진설계의 필요성을 살펴보기 위한 기초 연구로서, 유한차분해석 프로그램인 FLAC을 이용하여 가상의 대심도 흙막이 구조물을 대상으로 내진해석을 수행하고, 지진하중이 흙막이 시설물의 동적 거동에 미치는 영향을 평가하였다. 그 결과 지진하중 작용 시 벽체에 발생하는 모멘트와 지보재의 최대 축력이 지진하중 작용 전 최종 굴착단계와 비교하여 각각 98%, 87%까지 증가하는 것으로 나타나, 동적 토압이 구조물에 미치는 영향이 매우 큰 것으로 분석되었다. 또한 동해석 결과로 얻은 부재력을 이용하여 현행 기준에 따라 설계된 흙막이의 안정성을 재평가하고, 지진하중이 구조물의 설계에 미치는 영향을 분석하였다.



본 연구는 한국건설기술연구원의 주요사업인 "인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발(20210369-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다


  1. AASHOTO (2017), LRFD Bridge design Specification, 8th Edition, American Association of State Highway and Transportation Officials, Washington, D.C.
  2. Annie O.L.Kwok, J. Stewart, Y.Hashash, N.Matasovic, R. Pyke, Zhiliang Wang, and Z. Yang (2007), "Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, pp.1385-1398.
  3. ASCE 37-14 (2015), Design Loads on Structures during Construction, American Society of Civil Engieers, Virginia.
  4. Chang-Guk Sun, Jin-Tae Han, and Wanjei Cho (2012), "Representative Shear Wave Velocity of Geotechnical Layers by Synthesizing In-situ Seismic Test Data in Korea", J. of Engineering Geology, Vol.22, No.3, pp.293-307.
  5. EN 1998-1:2004 (2004), Eurocodes 8 : Design of structures for earthquake resistance- Part 1., British Standard.
  6. EN 1998-5:2004 (2004), Eurocodes 8 : Design of structures for earthquake resistance-Part 5., British Standard.
  7. ITASCA Consulting Group (2021), FLAC 8.1 Users manual: Dynamic analysis.
  8. Joyner, W.B. and Chen, A.T.F. (1975), "Calculation of Non-linear Ground Response in Earthquakes", Bulletin of the Seismological Society of America, Vol.65, pp.1315-1336.
  9. Korean Geotechnical Society (2018), Design specification of structure foundation, pp.547-593.
  10. Kuhlemeyer, R. L. and J. Lysmer (1973), "Finite Element Method Accuracy for Wave Propagation Problems", J. Soil Mech. & Foundations, Div. ASCE, 99(SM5), pp.421-427.
  11. Lysmer, J. and Waas, G. (1972), "Shear Waves in Plane Infinite Structures", J. of the Engineering Mechanics Division, Vol.98, No.1, pp.85-105.
  12. Md. Khaja Moniuddin, P. Manjularani and L. Govindaraju (2016), "Seismic Analysis of Soil Nail Performance in Deep Excavation", International J. of Geo-Engineering, 7 Article number: 16.
  13. Mejia, L. H. and E. M. Dawson (2006), "Earthquake Deconvolution for FLAC" in FLAC and Numerical Modeling in Geomechanics (Proceedings of the 4th International FLAC Symposium, Madrid, Spain), P. Varona & R. Hart, eds. Minneapolis, Minnesota: Itasca Consulting Group Inc., pp.211-219.
  14. Ministry of Land, Infrastructure and Transport (2019), Korea Construction Specification 11 19 15.
  15. Ministry of Land, Infrastructure and Transport (2018), Korea Design Standard 17 10 00.
  16. Ministry of Land, Infrastructure and Transport (2018), Korea Design Standard 21 30 00.
  17. Ministry of Land, Transport and Maritime Affairs (2010), Korean Highway Bridge Design Code.
  18. Park, Duhee, Shin, Jong-Ho, and Yun, Se-Ung (2010), "Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis", J. of the Korean Geotechnical Society, Vol.26, No.6, pp.71-85.
  19. Specification for Road earthwork - temporary structure (1999), Japan Road Associdation
  20. Standard specifications for Tunneling-Cut and Cover Tunnels (2016), Japan Society of Civil Engineering.