DOI QR코드

DOI QR Code

Quantitative risk assessment for wellbore stability analysis using different failure criteria

  • Noohnejad, Alireza (Department of Mining Engineering, Science and Research Branch, Islamic Azad University) ;
  • Ahangari, Kaveh (Department of Mining Engineering, Science and Research Branch, Islamic Azad University) ;
  • Goshtasbi, Kamran (Department of Mining Engineering, Tarbiat Modares University)
  • Received : 2019.10.01
  • Accepted : 2021.01.22
  • Published : 2021.02.10

Abstract

Uncertainties in geomechanical input parameters which mainly related to inappropriate data acquisition and estimation due to lack of sufficient calibration information, have led wellbore instability not yet to be fully understood or addressed. This paper demonstrates a workflow of employing Quantitative Risk Assessment technique, considering these uncertainties in terms of rock properties, pore pressure and in-situ stresses to makes it possible to survey not just the likelihood of accomplishing a desired level of wellbore stability at a specific mud pressure, but also the influence of the uncertainty in each input parameter on the wellbore stability. This probabilistic methodology in conjunction with Monte Carlo numerical modeling techniques was applied to a case study of a well. The response surfaces analysis provides a measure of the effects of uncertainties in each input parameter on the predicted mud pressure from three widely used failure criteria, thereby provides a key measurement for data acquisition in the future wells to reduce the uncertainty. The results pointed out that the mud pressure is tremendously sensitive to UCS and SHmax which emphasize the significance of reliable determinations of these two parameters for safe drilling. On the other hand, the predicted safe mud window from Mogi-Coulomb is the widest while the Hoek-Brown is the narrowest and comparing the anticipated collapse failures from the failure criteria and breakouts observations from caliper data, indicates that Hoek-Brown overestimate the minimum mud weight to avoid breakouts while Mogi-Coulomb criterion give better forecast according to real observations.

References

  1. Aadnoy, S.B. and Looyeh, R. (2010), Petroleum Rock Mechanics: Drilling Operation and Well Design, Elsevier Publication, Amsterdam, The Netherlands, 359.
  2. Al-Ajmi, A.M. and Zimmerman, R.W. (2005), "Relation between the Mogi and the Coulomb failure criteria", Int. J. Rock Mech. Min. Sci., 42(3), 431-439. https://doi.org/10.1016/j.ijrmms.2004.11.004. https://doi.org/10.1016/j.ijrmms.2004.11.004
  3. Ameen, M.S., Smart, B.G.D., Somerville, J.M.C., Hammilton, S. and Naji, N.A. (2009), "Predicting rock mechanical properties of carbonates from wireline logs (a case study: Arab-D reservoir, Ghawar field, Saudi Arabia)", Mar. Petrol. Geol., 26(4), 430-444. https://doi.org/10.1016/j.marpetgeo.2009.01.017. https://doi.org/10.1016/j.marpetgeo.2009.01.017
  4. Bagheripour, M.H., Rahgozar, R., Pashnesaz, H. and Malekinejad, M. (2011), "A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock", Geomech. Eng., 3(1), 61-81. http://doi.org/10.12989/gae.2011.3.1.061. https://doi.org/10.12989/gae.2011.3.1.061
  5. Chakravarti, I.M., Laha, R.G and Roy, J. (1967), Handbook of Methods of Applied Statistics, Volume 1, John Wiley and Sons, 392-394.
  6. Das, B. and Chatterjee, R. (2017), "Wellbore stability analysis and prediction of minimum mud weight for few wells in Krishna-Godavari Basin, India", Int. J. Rock Mech. Min. Sci., 93, 30-37. https://doi.org/10.1016/j.ijrmms.2016.12.018. https://doi.org/10.1016/j.ijrmms.2016.12.018
  7. Eaton, B.A. (1975), "The equation for geopressure prediction from well logs", Proceedings of the Fall Meeting of the Society of Petroleum Engineers of AIME, Dallas, Texas, U.S.A., September.
  8. Eissa, E.A. and Kazi, A. (1988), "Relation between static and dynamic Young's moduli of rocks", Int. J. Rock Mech. Min. Sci. Geomech., 25(6), 479-482. https://doi.org/10.1016/0148-9062(88)90987-4
  9. Elyasi, A. and Goshtasbi, K. (2015), "Using different rock failure criteria in wellbore stability analysis", Geomech. Energy Environ., 2, 15-21. https://doi.org/10.1016/j.gete.2015.04.001. https://doi.org/10.1016/j.gete.2015.04.001
  10. Fjaer, E., Holt, R.M., Hordrud, P., Raaen, A.M. and Risnes, R. (2008), Petroleum Related Rock Mechanic (Development in Petroleum Sciences, Elsevier, Amsterdam, The Netherlands.
  11. Gholami, R., Moradzadeh, A., Rasouli, V. and Hanachi, J. (2014), "Practical application of failure criteria in determining safe mud weight windows in drilling operations", J. Rock Mech. Geotech. Eng., 6(1), 13-25. https://doi.org/10.1016/j.jrmge.2013.11.002. https://doi.org/10.1016/j.jrmge.2013.11.002
  12. Guan Z.C and Sheng, Y.N. (2017), "Study on evaluation method for wellbore stability", J. Appl. Sci. Eng., 20(4), 453-457. https://doi.org/10.6180/jase.2017.20.4.06. https://doi.org/10.6180/jase.2017.20.4.06
  13. Han, Y. and Meng, F.F. (2014), "Selecting safe mud weight window for wellbore in shale while drilling using numerical simulation", Proceedings of the IADC/SPE Drilling Conference and Exhibition, Fort Worth, Texas, U.S.A., March.
  14. Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div., 106, 1013-1035. https://doi.org/10.1061/AJGEB6.0001029
  15. Horsrud, P. (2001), "Estimating mechanical properties of shale from empirical correlations", SPE Drill. Compl., 16 (2), 68-73. https://doi.org/10.2118/56017-PA. https://doi.org/10.2118/56017-PA
  16. Johnson, N.L, Kotz, S and Balakrishnan, N. (1994), Continuous Univariate Distributions, Volume 2, Wiley-Interscience.
  17. Kidambi, T. and Kumar, G.S. (2016), "Mechanical Earth modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf", J. Petrol. Sci. Eng., 141, 38-51. https://doi.org/10.1016/j.petrol.2016.01.003. https://doi.org/10.1016/j.petrol.2016.01.003
  18. Maleki, S., Gholami, R., Rasouli, V., Moradzadeh, A., Ghvami, R. and Sadeghzadeh, F. (2014), "Comparison of different failure criteria in prediction of safe mud weigh window in drilling practice", Earth Sci., 136, 36-58. https://doi.org/10.1016/j.earscirev.2014.05.010. https://doi.org/10.1016/j.earscirev.2014.05.010
  19. Militzer, H. and Stoll, R. (1973), "Einige Beitraege der Geophysik zur primaerdatenerfassung im Bergbau", Neue Bergbautechnik Leipzig, 3(1), 21-25.
  20. Mogi, K. (1971), "Fracture and flow under high triaxial compression", J. Geophys. Res., 76(5), 1255-1269. https://doi.org/10.1029/JB076i005p01255. https://doi.org/10.1029/JB076i005p01255
  21. Moos, D., Peska, P., Finkbeiner, T. and Zoback, M. (2003), "Comprehensive wellbore stability analysis utilizing quantitative risk assessment", J. Petrol. Sci. Eng., 38(3-4), 97-109. https://doi.org/10.1016/S0920-4105(03)00024-X. https://doi.org/10.1016/S0920-4105(03)00024-X
  22. Noeth, S.H. and Birchwood, R. (2015), "Mechanical Earth model, definition, construction, evaluation and various types", Schlumberger Geomechanics DCS, Huston, Texas, U.S.A.
  23. Ohen, H.A. (2003), "Calibrated wireline mechanical rock properties method for predicting and preventing wellbore collapse and sanding", Proceedings of the SPE European Formation Damage Conference, The Hague, The Netherlands, May.
  24. Ostadhassan, M., Zeng, Z. and Zamiran, S. (2012) "Geomechanical modeling of an anisotropic formation-Bakken case study", Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, Illinois, U.S.A., June.
  25. Ottesen, R.H., Zheng, R.H. and McCann, R.C. (1999), "Borehole Stability Assessment Using Quantitative Risk Analysis", In: Proceedings of the SPE/IADC Drilling Conference, Paper SPE/IADC 52864, Amsterdam, The Netherlands, March.
  26. Plazas, F. (2016), "Wellbore stability analysis based on sensitivity and uncertainty analysis", Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, UAE, September.
  27. Plumb, R., Edwards, S., Pidcock, G., Lee, D. and Stacey, B. (2000), "The mechanical Earth model concept and its application to high-risk well construction projects", Proceedings of the IADC/SPE 59128 Drilling Conference, New Orleans, Louisiana, U.S.A., February.
  28. Sheorey, P.R. (1997), Empirical Rock Failure Criteria, Balkema, Rotterdam, The Netherlands,176.
  29. Snedecor, G.W and Cochran, W.G. (1989), Statistical Methods, 8th Edition, Iowa State University Press, U.S.A.
  30. Stephens, M.A. (1976), "Asymptotic results for goodness-of-fit statistics with unknown parameters", Ann. Stat., 4, 357-369. https://doi.org/10.1214/aos/1176343411
  31. Wang, Z. (2001), Dynamic versus Static Elastic Properties of Reservoir Rocks, in Seismic and Acoustic Velocities in Reservoir Rocks, 531-539.
  32. Wei, J.G. and Yan, C.L. (2014), "Borehole stability analysis in oil and gas drilling in undrained condition", Geomech. Eng., 7(5), 553-567. http://doi.org/10.12989/gae.2014.7.5.553. https://doi.org/10.12989/gae.2014.7.5.553
  33. Wiprut, D. and Zoback, M.D. (2000), "Constraining the stress tensor in the Visund field, Norwegian North Sea: Application to wellbore stability and sand production", Int. J. Rock Mech. Min. Sci., 37(1-2), 317-336. https://doi.org/10.1016/S1365-1609(99)00109-4 https://doi.org/10.1016/S1365-1609(99)00109-4
  34. Zang, A. and Stephansson, O. (2010), Stress Field of the Earth's Crust, Springer, The Netherlands.
  35. Zhang, J. (2013), "Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes", Int. J. Rock Mech. Min. Sci., 60, 160-170. https://doi.org/10.1016/j.ijrmms.2012.12.025. https://doi.org/10.1016/j.ijrmms.2012.12.025
  36. Zhu, X., Liu, W. and Zheng, H. (2016), "A fully coupled thermo-poroelastoplasticity analysis of wellbore stability", Geomech. Eng., 10(4), 437-454. http://doi.org/10.12989/gae.2016.10.4.437. https://doi.org/10.12989/gae.2016.10.4.437
  37. Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R., Moos, D.B., Paska, P., Ward, C.D. and Wiprut, D.J. (2003), "Determination of stress orientation and magnitude in deep wells", Int. J. Rock Mech. Min. Sci., 40(7-8), 1049-1076. https://doi.org/10.1016/j.ijrmms.2003.07.001. https://doi.org/10.1016/j.ijrmms.2003.07.001