Determine Optimal Timing for Out-Licensing of New Drugs in the Aspect of Biotech

신약의 기술이전 최적시기 결정 문제 - 바이오텍의 측면에서

  • Na, Byungsoo (Korea University) ;
  • Kim, Jaeyoung (Korea University)
  • 나병수 (고려대학교 융합경영학부) ;
  • 김재영 (고려대학교 융합경영학부)
  • Received : 2020.08.06
  • Accepted : 2020.08.28
  • Published : 2020.09.30


With regard to the development of new drugs, what is most important for a Korean Biotech, where no global sales network has been established, is decision-making related to out-licensing of new drugs. The probability of success for each clinical phase is different, and the licensing amount and its royalty vary depending on which clinical phase the licensing contract is made. Due to the nature of such a licensing contract and Biotech's weak financial status, it is a very important decision-making issue for a Biotech to determine when to license out to a Big Pharma. This study defined a model called 'optimal timing for out-licensing of new drugs' and the results were derived from the decision tree analysis. As a case study, we applied to a Biotech in Korea, which is conducting FDA global clinical trials for a first-in-class new drug. Assuming that the market size and expected market penetration rate of the target disease are known, it has been shown that out-licensing after phase 1 or phase 2 of clinical trials is a best alternative that maximizes Biotech's profits. This study can provide a conceptual framework for the use of management science methodologies in pharmaceutical fields, thus laying the foundation for knowledge and research on out-licensing of new drugs.


  1. 강선준, 김민지, 원유형, 오건택 (2014). 출연연 및 대학에서 연구성과물의 기술이전 시 개량특허와 원천기술의 보호에 관한 검토. 기술혁신학회지, 20(2), 313-333.
  2. 고영희, 이미현 (2013). 기업의 보유 특허 특성과 경제적 활용 가능성에 대한 연구-의료화학산업 특허를 중심으로. 지식경영연구, 14(1), 39-55.
  3. 권해순, 이희상 (2017). 국내 제약.바이오기업들의 제휴가 기업의 시장가치에 미치는 영향. 한국산학기술학회 논문지, 18(7), 149-161.
  4. 손익수, 고영희 (2013). 핵심표준기술의 기술이전사업화를 통한 기업성장 및 신산업 창출 사례연구-이니텍 (주) ETRI 협력사례를 중심으로. 지식경영연구, 14(5), 15-34.
  5. 박현우 (2005). 의사결정트리를 통한 신약개발의 가치평가와 R&D 전략 시사점. 기술혁신학회지, 8(1), 94-115.
  6. 성웅현 (2010). 생명제약 기술 라이선스 경상로열티 추정에 관한 연구. 지식경영연구, 11(1), 37-50.
  7. 윤휘열, 백인환, 서정원, 배경진, 이만형, 강원구, 권광일 (2008). 모델 기반학적 신약개발에서 약동/약력학 모델링 및 시뮬레이션의 역할. 한국임상약학회지, 18(2), 85-96.
  8. 정순옥, 권수경, 최인영 (2008). 임상시험정보시스템 현황분석과 적용방안 모색. 대한임상약리학회지, 16(2), 129-136.
  9. 정우연, 김종일 (2018). 사업결합에 따른 바이오 신약 기술의 가치평가: 옵션반영 DCF를 중심으로. 회계정보연구, 36(1), 215-249.
  10. 한국바이오경제연구센터 (2017). 글로벌 제약시장 임상 파이프라인 분석.
  11. Allain, M. L., Henry, E., & Kyle, M. (2009). The timing of licensing: Theory and empirics. Unpublished paper. Available from the authors.
  12. Angell, M. (2004). The truth about the drug companies: How they deceive us and what to do about it. Random House.
  13. Barton, J. H., & Emanuel, E. J. (2005). The patents-based pharmaceutical development process: rationale, problems, and potential reforms. JAMA, 294(16), 2075-2082.
  14. Bode-Greuel, K. M., & Greuel, J. M. (2005). Determining the value of drug development candidates and technology platforms. Journal of Commercial Biotechnology, 11(2), 155-170.
  15. Hartmann, M., & Hassan, A. (2006). Application of real options analysis for pharmaceutical R&D project valuation-Empirical results from a survey. Research Policy, 35(3), 343-354.
  16. Hwang, T. J. (2013). Stock market returns and clinical trial results of investigational compounds: An event study analysis of large biopharmaceutical companies. PloS One, 8(8), 1-8.
  17. IQVIA Institute (2018). 2018 IQVIA Market Prognosis.
  18. Kalamas, J., & Pinkus, G. (2003). The optimum time for drug licensing. Nature Rev. Drug Discovery, 2(9), 691-692.
  19. Katila, R., & Mang, P. Y. (2003). Exploiting technological opportunities: The timing of collaborations. Research Policy, 32(2), 317-332.
  20. Kim, Y. (2009). Choosing between international technology licensing partners: An empirical analysis of US biotechnology firms. Journal of Engineering and Technology Management, 26(1-2), 57-72.
  21. Lerner, J., & Merges, R. P. (1997). The control of strategic alliances: An empirical analysis of biotechnology collaborations (No. w6014). National Bureau of Economic Research.
  22. Powell, W. W. (1998). Learning from collaboration: Knowledge and networks in the biotechnology and pharmaceutical industries. California Management Review, 40(3), 228-240.