DOI QR코드

DOI QR Code

Influences of Continuance Intention and Past Behavior on Active Users' Knowledge Sharing Continuance and Frequency: Naver Knowledge-iN case

지속의도와 과거행위가 핵심 사용자의 지식공유 지속여부 및 빈도에 미치는 효과: 네이버 지식인 사례

  • Kang, Minhyung (Department of e-Business, School of Business, Ajou University)
  • 강민형 (아주대학교 경영대학 이비즈니스학과)
  • Received : 2020.08.07
  • Accepted : 2020.08.19
  • Published : 2020.09.30

Abstract

Maintaining active users who repeatedly share high-quality knowledge is critical for the success of online Q&A sites. This study suggests two paths that lead to active users' continuous knowledge sharing: 1) elaborated decision process, represented by continuance intention, and 2) automated cognitive process, represented by past behavior. The direct and moderating effects of continuance intention and past behavior were verified by analyzing subjective intention data and objective behavior data of 333 active users of Naver Knowledge-iN. Using Cox proportional hazards regression and negative binomial regression, the influences of continuance intention and past behavior on two types of continuous knowledge sharing were examined. The results showed that only past behavior was significantly influential on knowledge sharing continuance and as to the frequency of knowledge sharing, both continuance intention and past behavior's influences were significant. It was also confirmed that past behavior negatively moderates continuance intention's effect on the frequency of knowledge sharing. In order to maintain active users' continuous knowledge sharing, it is important to habituate knowledge sharing through repetitive knowledge sharing behavior. And in order to increase the frequency of knowledge sharing, in addition to the habituation, appropriate benefits that can increase the continuance intention should be provided.

References

  1. 김병수 (2012). 모바일 소셜네트워크서비스 환경에서 지속 사용 의도의 선행 요인에 관한 연구: 신뢰와 프라이버시 우려의 역할. 지식경영연구, 13(4), 83-100. https://doi.org/10.15813/KMR.2012.13.4.006
  2. 김재희 (2016). R을 이용한 생존분석 기초. 파주: 자유아카데미.
  3. 박소연, 김승현 (2019). 제도기반 신뢰요소가 한국 전자상거래 기업의 생존에 미치는 영향에 관한 실증 분석 연구. 지식경영연구, 20(4), 131-148. https://doi.org/10.15813/kmr.2019.20.4.008
  4. 지은정, 박상준, 안소연, 이민정 (2018). 안과영역에서 생존분석 방법론 적용. Journal of Retina, 3(1), 1-12. https://doi.org/10.21561/jor.2018.3.1.1
  5. 함주연, 유현선, 지성훈, 이재남 (2014). SNS 사용자의 이용습관과 감정적 요인 관점에서 기업 SNS 계정의 지속적 사용의도에 관한 연구. 지식경영연구, 15(3), 37-66. https://doi.org/10.15813/KMR.2014.15.3.003
  6. Aarts, H., Verplanken, B., & Knippenberg, A. (1998). Predicting behavior from actions in the past: Repeated decision making or a matter of habit? Journal of Applied Social Psychology, 28(15), 1355-1374. https://doi.org/10.1111/j.1559-1816.1998.tb01681.x
  7. Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. Sage Publication, Inc.
  8. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action control. Springer.
  9. Barnes, S. J. (2011). Understanding use continuance in virtual worlds: Empirical test of a research model. Information & Management, 48(8), 313-319. https://doi.org/10.1016/j.im.2011.08.004
  10. Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. https://doi.org/10.2307/3250921
  11. Bland, J. M., & Altman, D. G. (2004). The logrank test. BMJ, (328), 1073.
  12. Bornfeld, B., & Rafaeli, S. (2019). When interaction is valuable: Feedback, churn and survival on community question and answer sites: The case of stack exchange. Proceedings of the 52nd Hawaii International Conference on System Sciences.
  13. Cameron, A. C., & Trivedi, P. K. (1990). Regression-based tests for overdispersion in the poisson model. Journal of Econometrics, 46(3), 347-364. https://doi.org/10.1016/0304-4076(90)90014-K
  14. Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data. Cambridge, UK, Cambridge University Press.
  15. Cheung, C. M., Lee, M. K., & Lee, Z. W. (2013). Understanding the continuance intention of knowledge sharing in online communities of practice through the post-knowledge-sharing evaluation processes. Journal of the American Society for Information Science and Technology, 64(7), 1357-1374. https://doi.org/10.1002/asi.22854
  16. Chiu, C. M., Wang, E. T., Shih, F. J., & Fan, Y. W. (2011). Understanding knowledge sharing in virtual communities: An integration of expectancy disconfirmation and justice theories. Online Information Review, 35(1), 134-153. https://doi.org/10.1108/14684521111113623
  17. Ciuca, V., & Matei, M. (2010). Survival analysis for the unemployment duration. Proceedings of the 5th WSEAS International Conference on Economy and Management Transformation.
  18. Conner, M., & Armitage, C. J. (1998). Extending the theory of planned behavior: A review and avenues for further research. Journal of Applied Social Psychology, 28(15), 1429-1464. https://doi.org/10.1111/j.1559-1816.1998.tb01685.x
  19. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
  20. Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle introduction to poisson regression and its alternatives. Journal of Personality Assessment, 91(2), 121-136. https://doi.org/10.1080/00223890802634175
  21. Danner, U. N., Aarts, H., & De Vries, N. K. (2008). Habit Vs. intention in the prediction of future behaviour: The role of frequency, context stability and mental accessibility of past behaviour. British Journal of Social Psychology, 47(2), 245-265. https://doi.org/10.1348/014466607X230876
  22. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  23. De Guinea, A. O., & Markus, M. L. (2009). Why break the habit of a lifetime? Rethinking the roles of intention, habit, and emotion in continuing information technology use. Mis Quarterly, 33(3), 433-444. https://doi.org/10.2307/20650303
  24. Deng, Y., Hou, J., Ma, X., & Cai, S. (2013). A dual model of entertainment-based and community-based mechanisms to explore continued participation in online entertainment communities. Cyberpsychology, Behavior, and Social Networking, 16(5), 378-384. https://doi.org/10.1089/cyber.2012.0402
  25. Fang, C., & Zhang, J. (2019). Users' continued participation behavior in social q&a communities: A motivation perspective. Computers in Human Behavior, (92), 87-109.
  26. Fang, Y. H., & Chiu, C. M. (2010). In justice we trust: Exploring knowledge-sharing continuance intentions in virtual communities of practice. Computers in Human Behavior, 26(2), 235-246. https://doi.org/10.1016/j.chb.2009.09.005
  27. Fishbein, M., & Ajzen, I. (1975). Beliefs, attitude, intention, and behavior: An introduction to theory and research, reading. MA, Addison-Wesley Publishing Company.
  28. Gazan, R. (2011). Social Q&A. Journal of the American Society for Information Science and Technology, 62(12), 2301-2312. https://doi.org/10.1002/asi.21562
  29. Guan, T., Wang, L., Jin, J., & Song, X. (2018). Knowledge Contribution behavior in online Q&A communities: An empirical investigation. Computers in Human Behavior, (81), 137-147.
  30. Hairs, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Printice Hall.
  31. Hartley, S. L., Barker, E. T., Seltzer, M. M., Floyd, F., Greenberg, J., Orsmond, G., & Bolt, D. (2010). The relative risk and timing of divorce in families of children with an autism spectrum disorder. Journal of Family Psychology, 24(4), 449. https://doi.org/10.1037/a0019847
  32. Hashim, K. F., & Tan, F. B. (2015). The mediating role of trust and commitment on members' continuous knowledge sharing intention: A commitment-trust theory perspective. International Journal of Information Management, 35(2), 145-151. https://doi.org/10.1016/j.ijinfomgt.2014.11.001
  33. Hong, S., Thong, J. Y., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834. https://doi.org/10.1016/j.dss.2006.03.009
  34. Hung, M. C., Hwang, H. G., & Hsieh, T. C. (2007). An exploratory study on the continuance of mobile commerce: An extended expectation-confirmation model of information system use. International Journal of Mobile Communications, 5(4), 409-422. https://doi.org/10.1504/IJMC.2007.012788
  35. Jin, J., Li, Y., Zhong, X., & Zhai, L. (2015). Why users contribute knowledge to online communities: An empirical study of an online social Q&A community. Information & Management, 52 (7), 840-849. https://doi.org/10.1016/j.im.2015.07.005
  36. Jin, X. L., Zhou, Z., Lee, M. K. O., & Cheung, C. M. K. (2013). Why users keep answering questions in online question answering communities: A theoretical and empirical investigation. International Journal of Information Management, 33(1), 93-104. https://doi.org/10.1016/j.ijinfomgt.2012.07.007
  37. Kang, M. (2018). Active users' knowledge-sharing continuance on social Q&A sites: Motivators and hygiene factors. Aslib Journal of Information Management, 70(2), 214-232. https://doi.org/10.1108/AJIM-09-2017-0207
  38. Khansa, L., Ma, X., Liginlal, D., & Kim, S. S. (2015). Understanding members' active participation in online question-and-answer communities: A theory and empirical analysis. Journal of Management Information Systems, 32(2), 162-203. https://doi.org/10.1080/07421222.2015.1063293
  39. Kim, B. (2011). Understanding antecedents of continuance intention in social-networking services. Cyberpsychology, Behavior, and Social Networking, 14(4), 199-205. https://doi.org/10.1089/cyber.2010.0009
  40. Kim, B., Kang, M., & Jo, H. (2014). Determinants of postadoption behaviors of mobile communications applications: A dual-model perspective. International Journal of Human-Computer Interaction, 30(7), 547-559. https://doi.org/10.1080/10447318.2014.888501
  41. Kim, S. S. (2009). The integrative framework of technology use: An extension and test. Mis Quarterly, 33(3), 513-537. https://doi.org/10.2307/20650307
  42. Kim, S. S., Malhotra, N. K., & Narasimhan, S. (2005). Two competing perspectives on automatic use: A theoretical and empirical comparison. Information Systems Research, 16(4), 418-432. https://doi.org/10.1287/isre.1050.0070
  43. Li, Z., Zhou, S., Choubey, S., & Sievenpiper, C. (2007). Failure event prediction using the cox proportional hazard model driven by frequent failure signatures. IIE Transactions, 39(3), 303-315. https://doi.org/10.1080/07408170600847168
  44. Lim, S., Xue, L., Yen, C. C., Chang, L., Chan, H. C., Tai, B. C., Duh, H. B. L., & Choolani, M. (2011). A study on Singaporean women's acceptance of using mobile phones to seek health information. International Journal of Medical Informatics, 80(12), e189-e202. https://doi.org/10.1016/j.ijmedinf.2011.08.007
  45. Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705-737. https://doi.org/10.2307/25148817
  46. Mirkovski, K., Jia, Y., Liu, L., & Chen, K. (2018). Understanding microblogging continuance intention: The directed social network perspective. Information Technology & People, 31(1), 215-238. https://doi.org/10.1108/ITP-07-2015-0168
  47. Nunnally, J. C. (1978). Psychometric theory. New York, NY, McGraw-Hill.
  48. Ouellette, J. A., & Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychological Bulletin, 124(1), 54-74. https://doi.org/10.1037/0033-2909.124.1.54
  49. Paroutis, S., & Al Saleh, A. (2009). Determinants of knowledge sharing using web 2.0 technologies. Journal of Knowledge Management, 13(4), 52-63. https://doi.org/10.1108/13673270910971824
  50. Pudipeddi, J. S., Akoglu, L., & Tong, H. (2014). User churn in focused question answering sites: Characterizations and prediction. Proceedings of the 23rd International Conference on World Wide Web, Seoul, South Korea.
  51. R Core Team (2020). R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Vol.
  52. Roca, J. C., Chiu, C. M., & Martinez, F. J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies, 64(8), 683-696. https://doi.org/10.1016/j.ijhcs.2006.01.003
  53. Ronis, D. L., Yates, J. F., & Kirscht, J. P. (1989). Attitudes, decisions, and habits as determinants of repeated behavior. In A. R. Pratkanis, S. J. Breckler & A. G. Greenwald (Eds.), Attitude structure and function. London, United Kingdom, Psychology Press.
  54. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85-92. https://doi.org/10.1287/mnsc.42.1.85
  55. Triandis, H. C. (1980). Value attitude and interpersonal behavior, Nebraska Symposium on Motivation, 1979: Belief, attitude and value. In H. E. Howe & M. Page (Eds.), Nebraska symposium on motivation. Lincoln, NE, University of Nebraska Press.
  56. Tsai, H. T., & Bagozzi, R. P. (2014). Contribution behavior in virtual communities: Cognitive, emotional, and social influences. Mis Quarterly, 38(1), 143-164. https://doi.org/10.25300/MISQ/2014/38.1.07
  57. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  58. Wang, X., Zhao, K., & Street, N. (2017). Analyzing and predicting user participations in online health communities: A social support perspective. Journal of Medical Internet Research, 19(4), e130. https://doi.org/10.2196/jmir.6834
  59. Wu, J., & Du, H. (2012). Toward a better understanding of behavioral intention and system usage constructs. European Journal of Information Systems, 21(6), 680-698. https://doi.org/10.1057/ejis.2012.15
  60. Yang, J., Wei, X., Ackerman, M. S., & Adamic, L. A. (2010). Activity lifespan: An analysis of user survival patterns in online knowledge sharing communities. Fourth International AAAI Conference on Weblogs and Social Media.
  61. Zhang, Y., Fang, Y., Wei, K. K., & Chen, H. (2010). Exploring the role of psychological safety in promoting the intention to continue sharing knowledge in virtual communities. International Journal of Information Management, 30(5), 425-436. https://doi.org/10.1016/j.ijinfomgt.2010.02.003
  62. Zheng, Y., Zhao, K., & Stylianou, A. (2013). The impacts of information quality and system quality on users' continuance intention in information-exchange virtual communities: An empirical investigation. Decision Support Systems, 56, 513-524. https://doi.org/10.1016/j.dss.2012.11.008
  63. Zhou, T. (2018). Understanding online knowledge community user continuance: A social cognitive theory perspective. Data Technologies and Applications, 52(3), 445-458. https://doi.org/10.1108/DTA-10-2017-0077