Factors Affecting Nucleation and Growth of Chromium Electrodeposited from Cr3+ Electrolytes Based on Deep Eutectic Solvents

  • El-Hallag, Ibrahim S. (Analytical and Electrochemistry Research Unit, Chemistry Department, Faculty of Science, Tanta University) ;
  • Moharram, Youssef I. (Analytical and Electrochemistry Research Unit, Chemistry Department, Faculty of Science, Tanta University) ;
  • Darweesh, Mona A. (Faculty of Engineering, Tanta University) ;
  • Tartour, Ahmed R. (Electroplating Department, Factory 100, Abu-Zaabal Company for Engineering Industries)
  • Received : 2020.01.17
  • Accepted : 2020.04.02
  • Published : 2020.08.31


Chromium was electrodeposited from deep eutectic solvents-based Cr3+ electrolytes on HB-pencil graphite electrode. Factors influencing the electrochemical behavior and the processes of Cr nucleation and growth were explored using cyclic voltammetry and chronoamperometry techniques, respectively. Cr3+ reduction was found to occur through an irreversible diffusion-controlled step followed by another irreversible one of impure diffusional behaviour. The reduction behavior was found to be greatly affected by Cr3+ concentration, temperature, and type of hydrogen bond donor used in deep eutectic solvents (DESs) preparation. A more comprehensive model was suggested and successfully applied to extract a consistent data relevant to Cr nucleation kinetics from the experimental current density transients. The potential, the temperature, and the hydrogen bond donor type were estimated to be critical factors controlling Cr nucleation. The nucleation and growth processes of Cr from either choline chloride/ethylene glycol (EG-DES) or choline chloride/urea (U-DES) deep eutectic solvents were evaluated at 70℃ to be three-dimensional (3D) instantaneous and diffusion-controlled, respectively. However, the kinetics of Cr nucleation from EG-DES was found to be faster than that from U-DES. Cr nucleation was tending to be instantaneous at higher temperature, potential, and Cr3+ concentration. Cr nuclei electrodeposited from EG-DES were characterized at different conditions using scanning electron microscope (SEM). SEM images show that high number density of fine spherical nuclei of almost same sizes was nearly obtained at higher temperature and more negative potential. Energy dispersive spectroscopy (EDS) analysis confirms that Cr deposits were obtained.


  1. C. Cotell, J. Sprague and J.r. F. A. Smidt, ASM Hand Book (Vol. 5), ASM International, USA, 1994.
  2. M. Schlesinger and M. Paunovic, Modern Electroplating, John Wiley & Sons, New Jersey, 2010.
  3. R.E. Tucker, Metal Finishing, Elsevier, New York, 2011.
  4. T. Norseth, Eviron. Health Perspect., 1981, 40, 121-130.
  5. V.S. Protsenko and F.I. Danilov, Clean. Technol. Environ. Policy., 2014, 16, 1201-1206.
  6. T. Hall, E. Taylor and M. Inman, Plating Surf. Finish., 2010, 2(9), 675-686.
  7. A. Liang, Q. Liu and B. Zhang, Mater. Lett., 2014, 119, 131-134.
  8. A. Liang, L. Ni and Q. Liu, Surf. Coat. Technol., 2013, 218, 23-29.
  9. F.I. Danilov, V.S. Protsenko and V.O. Gordiienko, Appl. Surf. Sci., 2011, 257(18), 8048-8053.
  10. R. Giovanardi and G. Orlando, Surf. Coat. Technol., 2011, 205(15), 3947-3955.
  11. D. Del Pianta, J. Frayret and C. Gleyzes, Electrochimica Acta., 2018, 284, 234-241.
  12. I. Drela, J. Szynkarczuk and J. Kubicki, J. Appl. Electrochem., 1989, 19(6), 933-936.
  13. J. Mcdougall, M. El-Sharif and S. Ma, J. Appl. Electrochem., 1998, 28(9), 929-934.
  14. J.H.O.J. Wijenberg, M. Steegh and M.P. Aarnts, Electrochimica Acta, 2015, 173, 819-826.
  15. W. Simka, D. Puszczyk and G. Nawrat, Electrochimica Acta, 2009, 54(23), 5307-5319.
  16. W. Liu, G. Liu, X. Saijun and J. Zhang, Int. J. Electrochem. Sci., 2017, 12, 1589-1599.
  17. G. Saravanan and S. Mohan, J. Appl. Electrochem., 2009, 39(8), 1393-1397.
  18. S. Survilienė, S. Eugenio and R. Vilar, J. Appl. Electrochem., 2011, 41(1), 107-114.
  19. F. Liu, Y. Deng and X. Han, J. Alloys Compd., 2016, 654, 163-170.
  20. A.P. Abbott and K.J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8(37), 4265-4279.
  21. V.S. Protsenko, L.S. Bobrova and D.E. Golubtsov, Russ. J. Appl. Chem., 2018, 91(7), 1106-1111.
  22. E.L. Smith, A.P. Abbott and K.S. Ryder, Chem. Rev., 2014, 114(21), 11060-111082.
  23. A.P. Abbott, G.Capper, and D.L. Davies, Chem-Eur. J., 2004, 10(15), p. 3769-3774.
  24. A.P. Abbott, A.A. Al-Barzinjyand P.D. Abbott, Phys. Chem. Chem. Phys., 2014, 16(19), 9047-9055.
  25. V. Protsenko, L. Bobrova and F. Danilov, Anti-Corros. Method. M., 2018, 65(5), 499-505.
  26. I. Mejia-Caballero, J. Aldana-Gonzalez and T.L. Manh, J. Electrochem Soc., 2018, 165(9), D393-401.
  27. I.G. David, D.E. Popa and M. Buleandra, J. Anal. Methods Chem., 2017, 1-22.
  28. M.R. Majidi, K. Asadpour-Zeynali and B. Hafezi, Electrochim-ica Acta, 2009 , 54(3), 1119-1126.
  29. M. Rezaei, S.H. Tabaian and D.F. Haghshenas, Electrochimica Acta, 2012, 59, 360-366.
  30. E.B. Budevski, G.T. Staikovand W.J. Lorenz, Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition, VCH, New York and Weinheim, 1996.
  31. B. Scharifker and G. Hills, Electrochimica Acta, 1983, 28(7), 879-889.
  32. M. Palomar-Pardave, B.R. Scharifker and E.M. Arce, Electrochimica Acta, 2005, 50(24), 4736-4745.
  33. K. Skrzypczynska, K. Kusmierek and A. Swiatkowski, Int. J. Electrochem. Sci., 2018, 13, 88-100.
  34. E. Laviron, J. Electroanal. Chem., 1979, 101, 19-28.
  35. J.T. Hinatsu and F.R. Foulkes, Can. J. Chem. Eng., 1991, 69(2), 571-577.
  36. D. Yue, Y. Jia and Y. Yao, Electrochimica Acta, 2012, 65, 30-36.
  37. A. Urcezino, L. dos Santos, P. Casciano and J. Braz. Chem. Soc., 2017, 28(7), 1193-1203.
  38. A.A. Kityk, V.S. Protsenko and F.I. Danilov, J. Electroanal. Chem., 2013, 689, 269-275.
  39. R. Seeber, C. Zanardi and G. Inzelt, ChemTexts, 2018, 1-18.