DOI QR코드

DOI QR Code

High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries

  • Heo, Kookjin (Korea Institute of Industrial Technology (KITECH)) ;
  • Im, Jehong (Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Jeong-Seon (Korea Institute of Industrial Technology (KITECH)) ;
  • Jo, Jeonggeon (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Seokhun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jaekook (Department of Materials Science and Engineering, Chonnam National University) ;
  • Lim, Jinsub (Korea Institute of Industrial Technology (KITECH))
  • Received : 2019.11.20
  • Accepted : 2020.03.16
  • Published : 2020.08.31

Abstract

In this article, we report the effect of blended cathode materials on the performance of all-solid-state lithium-ion batteries (ASLBs) with oxide-based organic/inorganic hybrid electrolytes. LiFePO4 material is good candidates as cathode material in PEO-based solid electrolytes because of their low operating potential of 3.4 V; however, LiFePO4 suffers from low electric conductivity and low Li ion diffusion rate across the LiFePO4/FePO4 interface. Particularly, monoclinic Li3V2(PO4)3 (LVP) is a well-known high-power-density cathode material due to its rapid ionic diffusion properties. Therefore, the structure, cycling stability, and rate performance of the blended LiFePO4/Li3V2(PO4)3 cathode material in ASLBs with oxidebased inorganic/organic-hybrid electrolytes are investigated by using powder X-ray diffraction analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller sorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.

References

  1. K. Heo, J. S. Lee, H. S. Kim, J. Kim and J. Lim, J. Electrochem, Soc., 2017, 164(12), A2398-2402. https://doi.org/10.1149/2.0791712jes
  2. M. Armand and J.M. Tarascon, Nature, 2008, 451(7179), 652-657. https://doi.org/10.1038/451652a
  3. K. Takada, Acta Mater, 2013, 61(3), 759-770. https://doi.org/10.1016/j.actamat.2012.10.034
  4. B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater., 2010, 22(3), 691-714. https://doi.org/10.1021/cm902696j
  5. W. Zhanga, J. Niea, F. Lic, Z.L. Wanga, and C. Sun, Nano Energy, 2018, 45, 413-419. https://doi.org/10.1016/j.nanoen.2018.01.028
  6. F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 1998, 394(6692), 456-458. https://doi.org/10.1038/28818
  7. T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, and P. Falaras, Nano Lett., 2002, 2(11), 1259-1261. https://doi.org/10.1021/nl025798u
  8. Z. Jiang, B. Carroll and K. M. Abraham, Electrochim. Acta, 1997, 42(17), 2667-2677. https://doi.org/10.1016/S0013-4686(97)00005-4
  9. X.Ben, W. Zhang, N. Chen and C. Sun, J. Phys. Chem., 2018, 122(18), 9852-9858. https://doi.org/10.1021/acs.jpcb.8b06206
  10. P. Raghavan, J. Manuel, X. Zhao, D.S. Kim, J.H. Ahn, and C. Nah, J. Power Sources, 2011, 196(16), 6742-6749. https://doi.org/10.1016/j.jpowsour.2010.10.089
  11. H.S. Jeong, D.W. Kim, Y.U. Jeong, and S.Y. Lee, J. Power Sources, 2010, 195(18), 6116-6121. https://doi.org/10.1016/j.jpowsour.2009.10.085
  12. S.W. Choi, S.M. Jo, W.S. Lee, and Y.R. Kim, Adv. Mater., 2003, 15(23), 2027-2032. https://doi.org/10.1002/adma.200304617
  13. Y. Wang and W.H. Zhong, ChemElectroChem, 2015, 2(1), 22-36. https://doi.org/10.1002/celc.201402277
  14. J.H. Choi, C.H. Lee, J.H. Yu, C.H. Doh, and S.M. Lee, J. Power Sources, 2015, 274, 458-463. https://doi.org/10.1016/j.jpowsour.2014.10.078
  15. D. Zhang, L. Zhang, K. Yang, H. Wang, C. Yu, D. Xu, B. Xu, and L. M. Wang, ACS Appl. Mater. Interfaces, 2017, 9(42), 36886-36896. https://doi.org/10.1021/acsami.7b12186
  16. D. H. Kim, M. Y. Kim, S. H. Yang, H, M. Ryu, H. Y. Jung, H. J. Ban, S. J. Park, J. Lim, and H. S. Kim, J. Ind. Eng. Chem., 2019, 71, 445-451. https://doi.org/10.1016/j.jiec.2018.12.001
  17. K. Hanai, K. Kusagawa, M. Ueno, T. Kobayashi, N. Imanishi, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 2010, 195(9), 2956-2960. https://doi.org/10.1016/j.jpowsour.2009.08.087
  18. F. Croce, F.S. Fiory, L. Persi, and B. Scrosati, Electrochem. Solid State Lett., 2001, 4(8), A121-A123. https://doi.org/10.1149/1.1380568
  19. S. Kim, J, Song, B, Sambandam, S. Kim, J. Jo, S. Park, S. Baek, and J. Kim, Mater. Today Commun., 2017, 10, 105-111. https://doi.org/10.1016/j.mtcomm.2017.01.001
  20. J. Kang, V. Mathew, J. Gim, S. Kim, J. Song, W. B. Im, J. Han, J. Y. Lee, and J. Kim, Sci. Rep.,2014, 4, 4047.
  21. J. Jo, J. Gim, J. Song, Y. Kim, V. Mathew, S. Kim, S. Kim, S. Park, J. P. Baboo, and J. Kim, Ceram. Int., 2017, 43(5), 4288-4294. https://doi.org/10.1016/j.ceramint.2016.12.071
  22. J. Lim, V. Mathew, K. Kim, J. Moon, and J. Kim, J. Electrochem. Soc., 2011, 158(6), A736-A740. https://doi.org/10.1149/1.3581029
  23. K.-S. Lee, S.-T. Myung, D.-W. Kim, and Y.-K. Sun, J. Power Sources, 2011, 196(16), 6974-6977. https://doi.org/10.1016/j.jpowsour.2010.11.014
  24. A. Klein, P. Axmann, and M. Wohlfahrt-Mehrens, J. Power Sources, 2016, 309, 169-177. https://doi.org/10.1016/j.jpowsour.2016.01.093
  25. K.G. Gallagher, S.-H. Kang, S.U. Park, and S.Y. Han, J. Power Sources, 2011, 196, 9702-9707. https://doi.org/10.1016/j.jpowsour.2011.07.054
  26. C. Heubner, T. Leibmann, M. Schneider and A. Michaelis, Electrochim. Acta, 2018, 269, 745-760. https://doi.org/10.1016/j.electacta.2018.02.165
  27. L. Liu, W. Xiao, M. Chen, H. Chen, Y. Cui, G. Zeng, Y. Chen, X. Ke, Z. Guo, Z. Shi, H. Zahng and S. Chou, J. Alloy and Compds, 2017, 719, 281-287. https://doi.org/10.1016/j.jallcom.2017.05.189
  28. Q.X. Du, Z.F. Tang, X.H. Ma, Y. Zang, X. Sun, Y. Shao, Z.Y. Wen, and C.H. Chen, Solid State Ionics, 2015, 279, 11-17. https://doi.org/10.1016/j.ssi.2015.07.006
  29. J.S. Lim, J.H. Gim, J.J. Song, D.T. Nguyen, S.J. Kim, J.G. Jo, V. Mathew, and J.K. Kim, J. Power Sources, 2016, 304, 354-359. https://doi.org/10.1016/j.jpowsour.2015.11.069