DOI QR코드

DOI QR Code

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide

  • Emir, Gamze (Canakkale Onsekiz Mart University, Science and Arts Faculty of Department of Chemistry) ;
  • Karakaya, Serkan (Canakkale Onsekiz Mart University, Science and Arts Faculty of Department of Chemistry) ;
  • Dilgin, Yusuf (Canakkale Onsekiz Mart University, Science and Arts Faculty of Department of Chemistry)
  • Received : 2019.10.31
  • Accepted : 2020.01.14
  • Published : 2020.08.31

Abstract

In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.

References

  1. A.B. Florou, M.I. Prodromidis, M.I. Karayannis, S.M. Tzouwara-Karayanni, Talanta, 2000, 52(3), 465-472. https://doi.org/10.1016/S0039-9140(00)00389-1
  2. X. Cao, J. Gao, Y. Ye, P. Wang, S. Ding, Y. Ye, H. Sun, Electroanalysis, 2016, 28(1), 140-144. https://doi.org/10.1002/elan.201500508
  3. L.Y. Hu, S.L. Hu, J. Wu, Y.H. Li, J.L Zheng, Z.J. Wei, J. Liu, H.L. Wang, Y.S. Liu, H. Zhang, J Agr Food Chem, 2012, 60(35), 8684-8693. https://doi.org/10.1021/jf300728h
  4. S.P. Li, K.D. Hu, L.Y. Hu, Y.H. Li, A.M. Jiang, F. Xiao, Y. Han, Y.S. Liu, H. Zhang, J Agr Food Chem, 2014, 62(5), 1119-1129. https://doi.org/10.1021/jf4047122
  5. K. Cheng, K. Ueno, T. Imamura, Handbook of Organic Analytical Reagents, Second ed., CRC Press, Boca Raton, FL, 1992.
  6. Z.H. Xue, X.X. Fu, H.H. Rao, M.H. Ibrahim, L. Xiong, X.H. Liu, X.Q. Lu, Talanta, 2017, 174, 667-672.
  7. I.M. Steinberg, A. Lobnik, O.S. Wolfbeis, Sens Actuators B, 2003, 90(1-3), 230-235. https://doi.org/10.1016/S0925-4005(03)00033-9
  8. A. Hennig, A. Hoffmann, H. Borcherding, T. Thiele, U. Schedler, U. Resch-Genger, Anal Chem, 2011, 83(12), 4970-4974. https://doi.org/10.1021/ac2007619
  9. J. Zhu, X.Y. Wu, D. Shan, P.X. Yuan, X.J. Zhang, Talanta, 2014, 130, 96-102. https://doi.org/10.1016/j.talanta.2014.06.057
  10. S.Y. Deng, G.Y. Zhang, D. Shan, Y.H. Liu, K. Wang, X.J. Zhang, Electrochim Acta, 2015, 155, 78-84. https://doi.org/10.1016/j.electacta.2014.12.139
  11. M.A. Chamjangali, H. Kouhestani, F. Masdarolomoor, H. Daneshinejad, Sens Actuators B, 2015, 216, 384-393. https://doi.org/10.1016/j.snb.2015.04.058
  12. Y. Wang, Colloids Surf B, 2011, 88(2), 614-621. https://doi.org/10.1016/j.colsurfb.2011.07.051
  13. S.M. Golabi, H.R. Zare, M. Hamzehloo, Electroanalysis, 2002, 14(9), 611-618. https://doi.org/10.1002/1521-4109(200205)14:9<611::AID-ELAN611>3.0.CO;2-7
  14. S. Ayaz, Y. Dilgin, Electrochim Acta, 2017, 258, 1086-1095. https://doi.org/10.1016/j.electacta.2017.11.162
  15. J. Zhu, D.S. Chauhan, D. Shan, X.Y. Wu, G.Y. Zhang, X.J. Zhang, Microchim Acta, 2014, 181(7-8), 813-820. https://doi.org/10.1007/s00604-014-1168-y
  16. S.M. Golabi, H.R. Zare, M. Hamzehloo, Microchem J, 2001, 69(2), 13-23. https://doi.org/10.1016/S0026-265X(00)00158-2
  17. Q.L. Sheng, Y. Shen, J.B. Zheng, H.F. Zhang, Sens Lett, 2012, 10(3-4), 1007-1011. https://doi.org/10.1166/sl.2012.2332
  18. B. Fang, N. Zhang, W. Zhang, A. Gu, G.F. Wang, J Appl Polym Sci, 2009, 112(6), 3488-3493. https://doi.org/10.1002/app.29929
  19. Q. Sheng, H. Yu, J. Zheng, Electrochim Acta, 2007, 52(25), 7300-7306. https://doi.org/10.1016/j.electacta.2007.05.074
  20. M.R. Nateghi, A. Bagheri, A. Massoumi, M.H. Kazemeini, Synth Met, 1998, 96(3), 209-212. https://doi.org/10.1016/S0379-6779(98)00094-0
  21. G. Chen, S. Bi, L. Dai, M. Cao, Y. Chen, X. Wang, Anal Lett, 1999, 32, 865-883.
  22. N.S. Lawrence, J. Davis, R.G. Compton, Talanta, 2000, 52(5), 771-784. https://doi.org/10.1016/S0039-9140(00)00421-5
  23. Y. Dilgin, B. Kizilkaya, B. Ertek, F. Isik, D.G. Dilgin, Sens Actuators B, 2012, 171, 223-229.
  24. Y. Dilgin, B. Kizilkaya, B. Ertek, N. Eren, D.G. Dilgin, Talanta, 2012, 89, 490-495. https://doi.org/10.1016/j.talanta.2011.12.074
  25. G. Emir, Y. Dilgin, Anal Lett, 2018, 51(1-2), 133-150. https://doi.org/10.1080/00032719.2017.1317782
  26. D.L. Vu, L. Cervenka, Electroanalysis, 2013, 8(25), 1967-1973.
  27. B. Ertek, D.L. Vu, L. Cervenka, Y. Dilgin, Anal Sci, 2012, 28(11), 1075-1080. https://doi.org/10.2116/analsci.28.1075
  28. Y. Dilgin, S. Canarslan, O. Ayyildiz, B. Ertek, G. Nisli, Electrochim Acta, 2012, 66, 173-179. https://doi.org/10.1016/j.electacta.2012.01.072
  29. J.L. Chang, G.T. Wei, T.Y. Chen, J.M. Zen, Electroanalysis, 2013, 25(4), 845-849. https://doi.org/10.1002/elan.201200431
  30. D.M. Tsai, A.S. Kumar, J.M. Zen, Anal Chim Acta, 2006, 556(1), 145-150. https://doi.org/10.1016/j.aca.2005.05.038
  31. G. Roman, A.C. Pappas, D.K. Demertzi, M.I. Prodromidis, Anal Chim Acta, 2004, 523, 201-207. https://doi.org/10.1016/j.aca.2004.07.037
  32. L.L. Paim, N.R. Stradiotto, Electrochim Acta, 2010, 55(13), 4144-4147. https://doi.org/10.1016/j.electacta.2010.02.082
  33. X. Cao, H. Xu, S. Ding, Y. Ye, X. Ge, L. Yu, Food Chem, 2016, 194, 1224-1229. https://doi.org/10.1016/j.foodchem.2015.08.134
  34. P. Jeroschewski, C. Steuckart, M. Kuhl, Anal Chem, 1996, 68(24), 4351-4357. https://doi.org/10.1021/ac960091b
  35. E. Schmidt, A. Marton, J. Hlavay, Talanta, 1994, 41(7), 1219-1224. https://doi.org/10.1016/0039-9140(94)80094-4
  36. I.G. David, D.E. Popa, M. Buleandra, J Anal Method Chem, 2017, 2017.
  37. A.N. Kawde, N. Baig, M. Sajid, RSC Adv, 2016, 6(94), 91325-91340. https://doi.org/10.1039/C6RA17466C
  38. J. Wang, A.N. Kawde, E. Sahlin, Analyst, 2000, 125(1), 5-7. https://doi.org/10.1039/a907364g
  39. Z.O. Uygun, Y. Dilgin, Sens Actuat B, 2013, 188, 78-84. https://doi.org/10.1016/j.snb.2013.06.075
  40. S. Karakaya, Y. Dilgin, Electroanalysis, 2017, 29(6), 1626-1634. https://doi.org/10.1002/elan.201700045
  41. O. Saglam, B. Kizilkaya, H. Uysal, Y. Dilgin, Talanta, 2016, 147, 315-321. https://doi.org/10.1016/j.talanta.2015.09.050
  42. B. Ertek, C. Akgul, Y. Dilgin, RSC Adv, 2016, 6, 20058-20066. https://doi.org/10.1039/C5RA25673A
  43. A. Ozcan, S. llkbas, Sens Actuat B, 2015, 215, 518-524. https://doi.org/10.1016/j.snb.2015.03.100
  44. N. Jadon, R. Jain, A. Pandey, J Electroanal Chem, 2017, 788, 7-13. https://doi.org/10.1016/j.jelechem.2017.01.055
  45. D.B. Kayan, D. Kocak, M. Ilhan, A. Koca, Int. J. Hydrogen Energy, 2017, 42(4), 2457-2463. https://doi.org/10.1016/j.ijhydene.2016.04.190