Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Received : 2020.04.10
  • Accepted : 2020.04.23
  • Published : 2020.08.31


Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.


  1. M. Zhou, H. L. Wang, S. Guo, Chem. Soc. Rev., 2016, 45(5), 1273-1307.
  2. Y. Holade, K. Servat, S. Tingry, T. W. Napporn, H. Remita, D. Cornu, K. B. Kokoh, ChemPhysChem, 2017, 18919), 2573-2605.
  3. S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev., 2015, 44(1), 362-381.
  4. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
  5. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, S. Y. Xie, J. Am. Chem. Soc., 2006, 128(24), 7756-7757.
  6. H. Ding, S. B. Yu, J. S. Wei, H. M. Xiong, ACS Nano, 2016, 10(1), 484-491.
  7. S. N. Baker, G. A. Baker, Angew. Chemie - Int. Ed., 2010, 49(38), 6726-6744.
  8. H. Li, Z. Kang, Y. Liu, S. T. Lee, J. Mater. Chem., 2012, 22(46), 24230-24253.
  9. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, K. S. Kim, ACS Catal., 2017, 7(10), 7196-7225.
  10. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater., 2017, 29(14), 1605838.
  11. N. Dubouis, A. Grimaud, Chem. Sci., 2019, 10(40), 9165-9181.
  12. V. C. Hoang, K. Dave, V. G. Gomes, Nano Energy, 2019, 66, 104093.
  13. G. Wu, N. Li, C. S. Dai, D. R. Zhou, Mater. Chem. Phys., 2004, 83(2-3), 307-314.
  14. B. Y. W. Li, Y. Liu, M. Wu, X. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J. S. Tse, S. Lu, Adv. Mater., 2018, 30(31), 1800676.
  15. D. V. Esposito, S. T. Hunt, Y. C. Kimmel, J. G. Chen, J. Am. Chem.Soc., 2012, 134(6), 3025-3033.
  16. Y. Yang, J. Liu, S. Guo, Y. Liu, Z. Kang, J. Mater. Chem. A, 2015, 3(36), 18598-18604.
  17. J. Zheng, Electrochim. Acta, 2017, 247, 381-391.
  18. Y. Xu, M. Kraft, R. Xu, Chem. Soc. Rev., 2016, 45(11), 3039-3052.
  19. C. Hu, L. Dai, Angew. Chemie - Int. Ed., 2016, 55(39), 11736-11758.
  20. M. W. Chung, C. H. Choi, S. Y. Lee, S. I. Woo, Nano Energy, 2015, 11, 526-532.
  21. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, Nano Res., 2015, 8(2), 355-381.
  22. M. Semeniuk, Z. Yi, V. Poursorkhabi, J. Tjong, S. Jaffer, Z. H. Lu and M. Sain, ACS Nano, 2019, 13(6), 6224-6255.
  23. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A. A. Firsov, Science, 2004, 306(5696), 666-669.
  24. S. Tang, W. Wu, X. Xie, X. Li, J. Gu, RSC Adv., 2017, 7(16), 9862-9871.
  25. C. Hu, Y. Xiao, Y. Zou, L. Dai, Electrochem. Energy Rev., 2018, 1(1), 84-112.
  26. J. Zhang, Z. Xia, L. Dai, Sci. Adv., 2015, 1(7), e1500564.
  27. P. Zhang, J. S. Wei, X. B. Chen, H. M. Xiong, J. Colloid Interface Sci., 2019, 537, 716-724.
  28. Z. Lei, S. Xu, J. Wan, P. Wu, Nanoscale, 2016, 8(4), 2219-2226.
  29. D. W. Zheng, B. Li, C. X. Li, J. X. Fan, Q. Lei, C. Li, Z. Xu,X. Z. Zhang, ACS Nano, 2016, 10(9), 8715-8722.
  30. Y. Song, S. Chen, ACS Appl. Mater. Interfaces, 2014, 6(16), 14050-14060.
  31. W. Li, Z. Wei, B. Wang, Y. Liu, H. Song, Z. Tang, B. Yang, S. Lu, Mater. Chem. Front., 2020, 4(1), 277-284.
  32. L. SGao, Y Chen, HFan, X Wei, C Hu, Li Wang, J. Mater. Chem. A, 2014, 2(18), 6320-6325.
  33. K. Kakaei, H. Javan, M. Khamforoush, S. A. Zarei, Int. J. Hydrogen Energy, 2016, 41(33), 14684-14691.
  34. S. Bhattacharyya, B. Konkena, K. Jayaramulu, W. Schuhmann, T. K. Maji, J. Mater. Chem. A, 2017, 5(26), 13573-13580.
  35. R. Atchudan, T. N. J. I. Edison, Y. R. Lee, J. Colloid Interface Sci., 2016, 482, 8-18.
  36. E. Martínez-Perinan, I. Bravo, S. J. Rowley-Neale, E. Lorenzo, C. E. Banks, Electroanalysis, 2018, 30(3), 436- 444.
  37. A. Datta, S. Kapri, S. Bhattacharyya, J. Mater. Chem. A, 2016, 4(38), 14614-14624.
  38. J. Shen, Y. Li, Y. Su, Y. Zhu, H. Jiang, X. Yang, C. Li, Nanoscale, 2015, 7(5), 2003-2008.
  39. K. Kakaei, Int. J. Hydrogen Energy, 2017, 42(16), 11605-11613.
  40. T. Bao, L. Song, S. Zhang, Chem. Eng. J., 2018, 351, 189-194.
  41. W. Li, Y. Liu, M. Wu, X. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J. S. Tse, S. Lu, B. Yang, Adv. Mater., 2018, 30(31), 1800676(1-8).
  42. Q. Dang, F. Liao, Y. Sun, S. Zhang, H. Huang, W. Shen, Z. Kang, Y. Shi, M. Shao, Electrochim. Acta, 2019, 299, 828-834.
  43. Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chemie - Int. Ed., 2020, 59(4), 1718-1726.
  44. G. Li, S. Hou, L. Gui, F. Feng, D. Zhang, B. He, L. Zhao, Appl. Catal. B Environ., 2019, 257, 117919.
  45. L. Tian, J. Wang, K. Wang, H. Wo, X. Wang, W. Zhuang, T. Li, X. Du, Carbon, 2019, 143, 457-466.
  46. P. Zhang, D. Bin, J. S. Wei, X. Q. Niu, X. B. Chen, Y. Y. Xia, H. M. Xiong, ACS Appl. Mater. Interfaces, 2019, 11(15), 14085-14094.
  47. S. Zhao, C. Li, J. Liu, N. Liu, S. Qiao, Y. Han, H. Huang, Y. Liu, Z. Kang, Carbon, 2015, 92, 64-73.
  48. D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces, 2014, 6(10), 7918-7925.
  49. R. Canton-Vitoria, L. Vallan, E. Urriolabeitia, A. M. Benito, W. K. Maser, N. Tagmatarchis, Chem. - A Eur. J., 2018, 24(41), 10468-10474.
  50. Z. Y. Shih, A. P. Periasamy, P. C. Hsu, H. T. Chang, Appl. Catal. B Environ., 2013, 132-133, 363-369.
  51. L. Wang, S. Zhao, X. Wu, S. Guo, J. Liu, N. Liu, H. Huang, Y. Liu, Z. Kang, RSC Adv., 2016, 6(71), 66893-66899.
  52. L. Zhang, Y. Yang, M. A. Ziaee, K. Lu, R. Wang, ACS Appl. Mater. Interfaces, 2018, 10(11), 9460-9467.
  53. S. Zhao, C. Li, H. Huang, Y. Liu, Z. Kang, J. Mater., 2015, 1(3), 236-244.
  54. J. Cao, Y. Hu, L. Chen, J. Xu, Z. Chen, Int. J. Hydrogen Energy, 2017, 42(5), 2931-2942.
  55. S. Guo, S. Zhao, X. Wu, H. Li, Y. Zhou, C. Zhu, N. Yang, X. Jiang, J. Gao, L. Bai, Y. Liu, Y. Lifshitz, S. T. Lee, Z. Kang, Nat. Commun., 2017, 8(1), 1-9.
  56. J. Zhang, J. Chen, Y. Luo, Y. Chen, X. Wei, G. Wang, R. Wang, Appl. Surf. Sci., 2019, 466, 911-919.
  57. C. Hu, C. Yu, M. Li, X. Wang, Q. Dong, G. Wang, J. Qiu, Chem. Commun., 2015, 51(16), 3419-3422.
  58. M. Wang, J. Fang, L. Hu, Y. Lai, Z. Liu, Int. J. Hydrogen Energy, 2017, 42(33), 21305-21310.
  59. L. Zhou, P. Fu, Y. Wang, L. Sun, Y. Yuan, J. Mater. Chem. A, 2016, 4(19), 7222-7229.
  60. W. J. Niu, R. H. Zhu, Yan-Hua, H. B. Zeng, S. Cosnier, X. J. Zhang, D. Shan, Carbon, 2016, 109, 402-410.
  61. H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu, P. Liu, H. Yang, T. An, Z. Tang, H. Zhao, Small, 2014, 10(16), 3371-3378.
  62. H. Liu, Q. Zhao, J. Liu, X. Ma, Y. Rao, X. Shao, Z. Li, W. Wu, H. Ning, M. Wu, Appl. Surf. Sci., 2017, 423, 909-916.
  63. L. L. Qiqi Li, Sheng Zhang, Liming Dai, J. Am. Chem. Soc., 2012, 134(46), 18932-18935.
  64. R. Yan, H. Wu, Q. Zheng, J. Wang, J. Huang, K. Ding, Q. Guo, J. Wang, RSC Adv., 2014, 4, 23097-23106.
  65. J. P. Guin, S. K. Guin, T. Debnath, H. N. Ghosh, Carbon, 2016, 109, 517-528.
  66. M. Favaro, L. Ferrighi, G. Fazio, L. Colazzo, C. Di Valentin, C. Durante, F. Sedona, A. Gennaro, S. Agnoli, G. Granozzi, ACS Catal., 2015, 5(1), 129-144.
  67. C. P. Deming, R. Mercado, J. E. Lu, V. Gadiraju, M. Khan, S. Chen, ACS Sustain. Chem. Eng., 2016, 4(12), 6580-6589.
  68. C. P. Deming, R. Mercado, V. Gadiraju, S. W. Sweeney, M. Khan, S. Chen, ACS Sustain. Chem. Eng., 2015, 3(12), 3315-3323.
  69. G. He, Y. Song, K. Liu, A. Walter, S. Chen, S. Chen, ACS Catal., 2013, 3(5), 831-838.
  70. P. Luo, L. Jiang, W. Zhang, X. Guan, Chem. Phys. Lett., 2015, 641, 29-32.
  71. K. Liu, Y. Song, S. Chen, Int. J. Hydrogen Energy, 2016, 41(3), 1559-1567.
  72. K. H. Koh, S. H. Noh, T. H. Kim, W. J. Lee, S. C. Yi, T. H. Han, RSC Adv., 2017, 7(42), 26113-26119.
  73. J. Li, X. Zhang, Z. Zhang, Z. Li, M. Gao, H. Wei, H. Chu, Electrochim. Acta, 2019, 304, 487-494.
  74. Z. Chen, K. Mou, X. Wang , L. Liu, Angew. Chemie, 2018, 130(39), 12972-C12976
  75. R. Vinoth, I. M. Patil, A. Pandikumar, B. A. Kakade, N. M. Huang, D. D. Dionysios, B. Neppolian, ACS Omega, 2016, 1(5), 971-980.
  76. J. J. Lv, J. Zhao, H. Fang, L. P. Jiang, L. L. Li, J. Ma, J. J. Zhu, Small, 2017, 13, 1-10.
  77. Z. Luo, D. Yang, G. Qi, J. Shang, H. Yang, Y. Wang, L. Yuwen, T. Yu, W. Huang, L. Wang, J. Mater. Chem. A, 2014, 2(48), 20605-20611.
  78. Y. Yao, Y. Guo, W. Du, X. Tong, X. Zhang, J. Mater. Sci. Mater. Electron., 2018, 29(20), 17695-17705.
  79. M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Nanoscale, 2016, 8(22), 11398-11402.
  80. H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, J. Am. Chem. Soc., 2015, 137(24), 7588-7591.
  81. M. Hasanzadeh, N. Shadjou, M. Marandi, J. Alloys Compd., 2016, 688, 171-186.
  82. X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Nanoscale, 2014, 6(5), 2603-2607.
  83. H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P.M. Ajayan, J. K. Tour, ACS Nano, 2014, 8(10), 10837-10843