Effect of Argon Ion Beam Incident Angle on Self-Organized Nanostructure on the Surface of Polyethylene Naphthalate Film

알곤 이온빔 입사각에 따른 Polyethylene Naphthalate 필름 표면의 자가나노구조화 분석

  • Joe, Gyeonghwan (Surface Technology Division, Korea Institute of Materials Science) ;
  • Yang, Junyeong (Surface Technology Division, Korea Institute of Materials Science) ;
  • Byeon, Eun-Yeon (Surface Technology Division, Korea Institute of Materials Science) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University) ;
  • Jung, Sunghoon (Surface Technology Division, Korea Institute of Materials Science) ;
  • Kim, Do-Geun (Surface Technology Division, Korea Institute of Materials Science) ;
  • Lee, Seunghun (Surface Technology Division, Korea Institute of Materials Science)
  • 조경환 (재료연구소 표면기술연구본부) ;
  • 양준영 (재료연구소 표면기술연구본부) ;
  • 변은연 (재료연구소 표면기술연구본부) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 정성훈 (재료연구소 표면기술연구본부) ;
  • 김도근 (재료연구소 표면기술연구본부) ;
  • 이승훈 (재료연구소 표면기술연구본부)
  • Received : 2020.04.20
  • Accepted : 2020.06.25
  • Published : 2020.06.30


Ion beam irradiation induces self-organization of nanostructure on the surface of polymer film. We show that the incident angle of Ar ions on polyethylene naphthalate(PEN) film changes self-organized nanostructure. PEN film was irradiated by argon ion beams with the ion incident angle of 0°, 30°, 45°, 60°, and 80°. Nanostructure was altered from dimple to ripple structure as the angle increases. The ripple structure changed to pillar structure after 60°due to that the shallow incident angle increased the ion energy transfer per depth up to 50 eV/Å, which value could induce excessive surface heating and oligomer formation reacting as a physical mask for anisotropic etching. And quantitative analysis of the nanostructures was adapted by using ABC model and fractal dimension theory.


  1. M. Ramrakhiani, Nanostructures and their applications, Recent Res. Sci. Technol. 4 (2012).
  2. A.M. Ektessabi, S. Hakamata, XPS study of ion beam modified polyimide films, Thin Solid Films. 377 (2000) 621-625.
  3. 이승훈, 변은연, 최주연, 정성훈, 유병길, 김도근, 이온빔 처리된 폴리머 표면의 자가나노구조화를 이용한 반사방지 필름 제조용 소프트몰드 임프린팅 연구, 한국표면공학회지. 50 (2017) 480-485.
  4. I.P. Jain, G. Agarwal, Ion beam induced surface and interface engineering, Surf. Sci. Rep. 66 (2011) 77-172.
  5. X. Liu, S. Wang, Three-dimensional nanobiointerface as a new platform for guiding cell fate, Chem. Soc. Rev. 43 (2014) 2385-2401.
  6. A. Tripathy, P. Sen, B. Su, W.H. Briscoe, Natural and bioinspired nanostructured bactericidal surfaces, Adv. Colloid Interface Sci. 248 (2017) 85-104.
  7. L.E. Fisher, Y. Yang, M.-F. Yuen, W. Zhang, A.H. Nobbs, B. Su, Bactericidal activity of biomimetic diamond nanocone surfaces, Biointerphases. 11 (2016) 11014.
  8. J. Zhu, Y. Hu, M. Xu, W. Yang, L. Fu, D. Li, L. Zhou, Enhancement of the adhesive strength between Ag films and Mo substrate by Ag implanted via ion beam-assisted deposition, Materials (Basel). 11 (2018) 762.
  9. Y. Lee, Y. Yoo, J. Kim, S. Widhiarini, B. Park, H.C. Park, K.J. Yoon, D. Byun, Mimicking a superhydrophobic insect wing by argon and oxygen ion beam treatment on polytetrafluoroethylene film, J. Bionic Eng. 6 (2009) 365-370.
  10. H. Kitani, N. Toyoda, J. Matsuo, I. Yamada, Incident angle dependence of the sputtering effect of Ar-cluster-ion bombardment, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 121 (1997) 489-492.
  11. A. Keller, S. Facsko, Ion-induced nanoscale ripple patterns on Si surfaces: theory and experiment, Materials (Basel). 3 (2010) 4811-4841.
  12. S.R. Kim, Surface modification of poly (tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments, J. Appl. Polym. Sci. 77 (2000) 1913-1920.
  13. E.H. Lee, G.R. Rao, M.B. Lewis, L.K. Mansur, Ion beam application for improved polymer surface properties, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 74 (1993) 326-330.
  14. S. Lee, E. Byeon, S. Jung, D.-G. Kim, Heterogeneity of hard skin layer in wrinkled PDMS surface fabricated by Ar ion-beam irradiation, Sci. Rep. 8 (2018).
  15. S. Park, B. Kahng, H. Jeong, A.-L. Barabasi, Dynamics of ripple formation in sputter erosion: nonlinear phenomena, Phys. Rev. Lett. 83 (1999) 3486.
  16. Y. Gong, A.W. Wren, N.P. Mellott, Quantitative morphological and compositional evaluation of laboratory prepared aluminoborosilicate glass surfaces, Appl. Surf. Sci. 324 (2015) 594-604.
  17. M. Senthilkumar, N.K. Sahoo, S. Thakur, R.B. Tokas, Characterization of microroughness parameters in gadolinium oxide thin films: A study based on extended power spectral density analyses, Appl. Surf. Sci. 252 (2005) 1608-1619.
  18. S. Lee, E.Y. Byun, J.K. Kim, D.G. Kim, Ar and O2 linear ion beam PET treatments using an anode layer ion source, Curr. Appl. Phys. 14 (2014) S180-S182.
  19. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - The stopping and range of ions in matter (2010), Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268 (2010) 1818-1823.
  20. S. Facsko, T. Bobek, A. Stahl, H. Kurz, T. Dekorsy, Dissipative continuum model for selforganized pattern formation during ion-beam erosion, Phys. Rev. B. 69 (2004) 153412.
  21. M.T. De A. Freire, A.P. Damant, L. Castle, F.G.R. Reyes, Thermal stability of polyethylene terephthalate (PET): oligomer distribution and formation of volatiles, Packag. Technol. Sci. 12 (1999) 29-36.
  22. K. Zhang, O. Bobes, H. Hofsass, Designing self-organized nanopatterns on Si by ion irradiation and metal co-deposition, Nanotechnology. 25 (2014) 85301.