Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)

  • Abdellaoui, Najib (Department of Life Science, School of Medical-biosystematics, Soongsil University) ;
  • Kwak, Jun Soung (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2020.04.21
  • Accepted : 2020.05.26
  • Published : 2020.06.30


Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.


  1. Bandara, V., Michael, M. and Gleadle, J.: Hypoxia represses microRNA biogenesis proteins in breast cancer cells. BMC Cancer, 14: 533, 2014.
  2. Bartel, D.P.: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116: 281-297, 2004.
  3. Bye, A., Rosjo, H., Aspenes, S.T., Condorelli, G., Omland, T. and Wisloff, U.: Circulating microRNAs and aerobic fitness? The HUNT-Study. PLoS One, 8: e57496, 2013.
  4. Chan, S.Y. and Loscalzo, J.: MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle, 9: 1072-1083, 2010.
  5. Chan, S.Y., Zhang, Y.-Y., Hemann, C., Mahoney, C.E., Zweier, J.L. and Loscalzo, J.: MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metabolism, 10: 273-284, 2009.
  6. Cicchillitti, L., Di Stefano, V., Isaia, E., Crimaldi, L., Fasanaro, P., Ambrosino, V., Antonini, A., Capogrossi, M.C., Gaetano, C., Piaggio, G. and Martelli, F.: Hypoxia-inducible factor 1-alpha induces miR-210 in normoxic differentiating myoblasts. J. Biol. Chem., 287: 44761-44771, 2012.
  7. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C. and Marks, D.S.: MicroRNA targets in Drosophila. Genome Biol., 5: 1-14, 2003.
  8. Gibbings, D.J., Ciaudo, C., Erhardt, M. and Voinnet, O.: Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol., 11: 1143-1149, 2009.
  9. Granchi, C., Fancelli, D. and Minutolo, F.: An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg. Med. Chem. Lett., 24: 4915-4925, 2014.
  10. Guimbellot, J.S., Erickson, S.W., Mehta, T., Wen, H., Page, G.P., Sorscher, E.J. and Hong, J.S.: Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med. Genomics, 2: 1-17, 2009.
  11. Ho, A.S., Huang, X., Cao, H., Christman-Skieller, C., Bennewith, K., Le, Q.-T. and Koong, A.C.: Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol., 3: 109-113, 2010.
  12. Hua, Z., Lv, Q., Ye, W., Wong, C.-K.A., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B. and Zhang, Y.: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One, 1: e116, 2006.
  13. Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.-T. and Giaccia, A.J.: Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell, 35: 856-867, 2009.
  14. Huang, X., Le, Q.-T. and Giaccia, A.J.: MiR-210 - micromanager of the hypoxia pathway. Trends Mol. Med., 16: 230-237, 2010.
  15. Hutvagner, G. and Zamore, P.D.: A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297: 2056-2060, 2002.
  16. Ivan, M., Harris, A.L., Martelli, F. and Kulshreshtha, R.: Hypoxia response and microRNAs: no longer two separate worlds. J. Cell. Mol. Med., 12: 1426-1431, 2008.
  17. Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T. and Tomari, Y.: Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell, 39: 292-299, 2010.
  18. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and Marks, D.S.: Human microRNA targets. PLoS Biol., 2: e363, 2004.
  19. Kallio, P.J., Pongratz, I., Gradin, K., McGuire, J. and Poellinger, L.: Activation of hypoxia-inducible factor $1{\alpha}$: Posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proceedings of the National Academy of Sciences, 94: 5667-5672, 1997.
  20. Katakowski, M., Buller, B., Wang, X., Rogers, T. and Chopp, M.: Functional microRNA is transferred between glioma cells. Cancer Res., 70: 8259-8263, 2010.
  21. Kharaziha, P., Ceder, S., Li, Q. and Panaretakis, T.: Tumor cell-derived exosomes: A message in a bottle. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1826: 103-111, 2012.
  22. Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.-G., Croce, C.M., Negrini, M., Calin, G.A. and Ivan, M.: A microRNA signature of hypoxia. Mol. Cell. Biol., 27: 1859-1867, 2007.
  23. Lai, K.P., Li, J.-W., Tse, A.C.-K., Chan, T.-F. and Wu, R.S.S.: Hypoxia alters steroidogenesis in female marine medaka through miRNAs regulation. Aquat. Toxicol., 172: 1-8, 2016.
  24. Lau, K., Lai, K.P., Bao, J.Y.J., Zhang, N., Tse, A., Tong, A., Li, J.W., Lok, S., Kong, R.Y.C., Lui, W.Y., Wong, A. and Wu, R.S.S.: Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One, 9: e110698, 2014.
  25. Lays, N., Iversen, M.M.T., Frantzen, M. and Jorgensen, E.H.: Physiological stress responses in spotted wolffish (Anarhichas minor) subjected to acute disturbance and progressive hypoxia. Aquaculture, 295: 126-133, 2009.
  26. Minet, E., Mottet, D., Michel, G., Roland, I., Raes, M., Remacle, J. and Michiels, C.: Hypoxia-induced activation of HIF-1: role of HIF-$1{\alpha}$-Hsp90 interaction. FEBS Lett., 460: 251-256, 1999.
  27. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B. and Tewari, M.: Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 105: 10513-10518, 2008.
  28. Ohh, M., Park, C.W., Ivan, M., Hoffman, M.A., Kim, T.-Y., Huang, L.E., Pavletich, N., Chau, V. and Kaelin, W.G.: Ubiquitination of hypoxia-inducible factor requires direct binding to the [bgr]-domain of the von Hippel-Lindau protein. Nat. Cell Biol., 2: 423-427, 2000.
  29. Park, M.H., Bae, S.S., Choi, K.-Y. and Min, D.S.: Phospholipase D2 promotes degradation of hypoxia-inducible factor-$1{\alpha}$ independent of lipase activity. Exp. Mol. Med., 47: e196, 2015.
  30. Poellinger, L. and Johnson, R.S.: HIF-1 and hypoxic response: the plot thickens. Curr. Opin. Genet. Dev., 14: 81-85, 2004.
  31. Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7: 585-619, 2010.
  32. Richards, J.G.: Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol., 214: 191-199, 2011.
  33. Rosjo, H., Dahl, M.B., Bye, A., Andreassen, J., Jorgensen, M., Wisloff, U., Christensen, G., Edvardsen, T. and Omland, T.: Prognostic value of circulating microRNA-210 levels in patients with moderate to severe aortic stenosis. PLoS One, 9: e91812, 2014.
  34. Rueda, A., Barturen, G., Lebron, R., Gomez-Martin, C., Alganza, A., Oliver, J.L. and Hackenberg, M.: sRN Atoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res., 43: W467-W473, 2015.
  35. Semenza, G.L.: Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology, 24: 97-106, 2009.
  36. Soitamo, A.J., Rabergh, C.M.I., Gassmann, M., Sistonen, L. and Nikinmaa, M.: Characterization of a Hypoxia-inducible Factor (HIF-$1{\alpha}$) from Rainbow Trout: Accumulation of protein occurs at normal venous oxygen tension. J. Biol. Chem., 276: 19699-19705, 2001.
  37. Stroka, D.M., Burkhardt, T., Desbaillets, I., Wenger, R. H., Neil, D.A.H., Bauer, C., Gassmann, M. and Candinas, D.: HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J., 15: 2445-2453, 2001.
  38. Sturm, M., Hackenberg, M., Langenberger, D. and Frishman, D.: TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics, 11: 1-17, 2010.
  39. Tse, A.C.-K., Li, J.-W., Chan, T.-F., Wu, R.S.-S. and Lai, K.-P.: Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma. Aquat. Toxicol., 165: 189-196, 2015.
  40. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J. and Lotvall, J.O.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9: 654-659, 2007.
  41. Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L. and Wang, J.: WEGO: a web tool for plotting GO annotations. Nucleic Acids Res., 34: W293-W297, 2006.
  42. Zhang, C., Wang, C., Chen, X., Yang, C., Li, K., Wang, J., Dai, J., Hu, Z., Zhou, X., Chen, L., Zhang, Y., Li, Y., Qiu, H., Xing, J., Liang, Z., Ren, B., Yang, C., Zen, K. and Zhang, C.-Y.: Expression profile of microRNAs in serum: A fingerprint for esophageal squamous cell carcinoma. Clin. Chem., 56: 1871-1879, 2010.