DOI QR코드

DOI QR Code

Development of Battery Monitoring System Using the Extended Kalman Filter

확장 칼만 필터를 이용한 배터리 모니터링 시스템 개발

  • Jo, Sung-Woo (Materials & Components Basic Research Division, ETRI) ;
  • Jung, Sun-Kyu (Materials & Components Basic Research Division, ETRI) ;
  • Kim, Hyun-Tak (Materials & Components Basic Research Division, ETRI)
  • 조성우 (한국전자통신연구원) ;
  • 정순규 (한국전자통신연구원) ;
  • 김현탁 (한국전자통신연구원)
  • Received : 2020.03.24
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

A Battery Monitoring System capable of State-of-Charge(SOC) estimation using the Extended Kalman Filter(EKF) is described in this paper. In order to accurately estimate the SOC of the battery, the battery cells were modeled as the Thevenin equivalent circuit model. The Thevenin model's parameters were measured in experiments. For the Battery Monitoring System, we designed a battery monitoring device that can calculate the SOC estimation using the EKF and a monitoring server that controls multiple battery monitoring devices. We also develop a web-based dashboard for controlling and monitoring batteries. Especially the computation of the monitoring server could be reduced by calculating the battery SOC estimation at each Battery Monitoring Device.

References

  1. Y. H. You, C. S. Leem & D. S. Choi. (2018). Assessing the accuracy of electric energy monitoring system. Journal of the Korea Convergence Society, 9(9), 53-60. DOI : 10.15207/JKCS.2018.9.9.053
  2. H. K. Lee & G. T. Kim. (2019). Battery Monitoring System for High Capacity Uninterruptible Power Supply. Journal of IKEEE, 23(2), 580-585. DOI : 10.7471/ikeee.2019.23.2.580
  3. G. L. Plett. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. Journal of Power Sources, 134(2), 252-261. DOI : 10.1016/j.jpowsour.2004.02.031 https://doi.org/10.1016/j.jpowsour.2004.02.031
  4. G. L. Plett. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources, 134(2), 277-292. DOI : 10.1016/j.jpowsour.2004.02.033 https://doi.org/10.1016/j.jpowsour.2004.02.033
  5. J. Meng et al. (2018). An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-Ion Battery. IEEE Transactions on Industry Applications, 54(2), 1583-1591. DOI : 10.1109/TIA.2017.2775179 https://doi.org/10.1109/TIA.2017.2775179
  6. R. Zhang et al. (2018). State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies, 11(7), 1820. DOI : 10.3390/en11071820 https://doi.org/10.3390/en11071820
  7. Y. Zheng, M. Ouyang, X. Han, L. Lu & J. Li. (2018). Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. Journal of Power Sources, 377, 161-188. DOI : 10.1016/j.jpowsour.2017.11.094 https://doi.org/10.1016/j.jpowsour.2017.11.094
  8. J. H. Seung, J. K. Park & S. G. Yoo. (2018). Unknown-Parameter Identification for Accurate Control of 2-Link Manipulator using Dual Extended Kalman Filter. Journal of the Korea Convergence Society, 9(6), 53-60. DOI : 10.15207/JKCS.2018.9.6.053
  9. K. W. Jang & G. B. Chung. (2012). A SOC Estimation using Kalman Filter for Lithium-Polymer Battery. The Transactions of the Korean Institute of Power Electronics, 17(3), 222-229. DOI : 10.6113/TKPE.2012.17.3.222 https://doi.org/10.6113/TKPE.2012.17.3.222
  10. J. Meng, G. Luo, M. Ricco, M. Swierczynski, D. I. Stroe & R. Teodorescu. (2018). Overview of Lithium-Ion Battery Modeling Methods for State-of-Charge Estimation in Electrical Vehicles. Applied Sciences, 8(5), 659. DOI : 10.3390/app8050659 https://doi.org/10.3390/app8050659
  11. S. Jung. (2017). EKF Based SOH State Estimation Algorithm for UAV Li-Po Battery Pack. Journal of the Korea Convergence Society, 8(6), 237-243. DOI : 10.15207/JKCS.2017.8.6.237 https://doi.org/10.15207/JKCS.2017.8.3.237
  12. P. Shrivastava, T. K. Soon, M. Y. I. B. Idris & S. Mekhilef. (2019). Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renewable and Sustainable Energy Reviews, 113, 109233. DOI : 10.1016/j.rser.2019.06.040 https://doi.org/10.1016/j.rser.2019.06.040
  13. L. Zhi, Z. Peng, W. Zhifu, S. Qiang & R. Yinan. (2017). State of Charge Estimation for Li-ion Battery Based on Extended Kalman Filter. Energy Procedia, 105, 3515-3520. DOI : 10.1016/j.egypro.2017.03.806 https://doi.org/10.1016/j.egypro.2017.03.806
  14. P. Kim. (2011). Kalman Filter for Beginners: with MATLAB Examples. South Carolina : CreateSpace Independent Publishing Platform.
  15. J. H. Seo, K. R. Park & M. S. Yoon. (2017). Design and Implementation of web-based production monitoring system for small manufacturers. Journal of the Korea Convergence Society, 8(8), 89-94. DOI : 10.15207/JKCS.2017.8.8.089