DOI QR코드

DOI QR Code

딥 러닝 기법을 활용한 이미지 내 한글 텍스트 인식에 관한 연구

Research on Korea Text Recognition in Images Using Deep Learning

  • 성상하 (동아대학교 경영정보학과) ;
  • 이강배 (동아대학교 경영정보학과) ;
  • 박성호 (동아대학교 경영정보학과)
  • 투고 : 2020.05.07
  • 심사 : 2020.06.20
  • 발행 : 2020.06.28

초록

본 연구에서는 컴퓨터 비전의 분야 중 하나인 문자 인식에 관한 연구를 수행했다. 대표적인 문자인식 기법 중 하나인 광학식 문자 판독 기법의 경우 일정한 규격과 서식에서 벗어나게 되면 인식률이 떨어진다는 한계점이 있다. 따라서 본 연구에서는 딥 러닝 기법을 적용해 이러한 문제점을 해결하고자 한다. 또한 기존의 문자 인식 연구의 경우 대부분 영어 및 숫자 인식에 국한되어 있다. 따라서 본 연구는 한글 인식을 위한 딥 러닝 기반 문자 인식 알고리즘을 제시한다. 알고리즘은 1-NED 평가 방법에서 0.841의 점수를 얻었으며, 이는 영어 인식 결과와 비슷한 수치이다. 본 연구를 통해 딥 러닝 기반 한글 인식 알고리즘의 성능을 확인할 수 있으며, 이를 통해 향후 연구방향에 대해 제시한다.

참고문헌

  1. H. J. Son & S. H. Kim. (2007). Machine Learning in Character Pattern Recognition. Communications of the Korean Institute of Information Scientists and Engineers, 25(3), 12-20. pISSN : 1229-6821
  2. K. S. Son, J. W. Kim & J. H. Lim. (2019). Convergence CCTV camera embedded with Deep Learning SW technology. Journal of the Korea Convergence Society, 10(1), 103-113. DOI : 10.15207/JKCS.2019.10.1.103 https://doi.org/10.15207/JKCS.2019.10.1.103
  3. Q. Ye & D. Doermann. (2014). Text Detection and Recognition in Imagery: A Survey. IEEE Transactions On Patern Analysis And Machine Inteligence, 37(7), 1480-1500. DOI : 10.1109/TPAMI.2014.2366765
  4. K. K. Kim, Y. Hur, G. M. Kim, W. H. Yu & H. S. Lim. (2017). Detail Focused Image Classifier Model for Traditional Images. Journal of the Korea Convergence Society, 8(12), 85-92. DOI : 10.15207/JKCS.2017.8.12.085 https://doi.org/10.15207/JKCS.2017.8.12.085
  5. J. S. Hwang, H. H. Jeon, S. H. Kim, & K. K. Kwon. (2017). OCR image recognition rate digital solution for prescription scanning. Proceedings of Korean Institute of Information Technology Conference. (pp. 379-381).
  6. S. H. Lee, J. H. Jeon, H. S. Hong, D. H. Kang & M. H. Park. (2017). Korean Prescription Character Recognition System Using OCR Technology. Proceedings of The Korean Institute of Information Scientists and Engineers Conference. (pp. 362-364).
  7. C. Y. Suen, S. Mori, H. C. Rim & P. S. P. Wang. (1998). Intriguing Aspects of Oriental Languages. International Journal of Pattern Recognition and Artificial Intelligence, 12(1), 5-29. DOI : 10.1142/S0218001498000038
  8. M. K. Kim & K. H. Lee. (1999). Design of Receipt Automation System Using OCR. Proceedings of The Korean Institute of Information Scientists and Engineers Conference. (pp. 531-533).
  9. S. W. Lee. (2002). Study on the selecting optimal artificial neural networks model prior to forecasting stock. master thesis, Inje University, Gyeongsangnam-do.
  10. K. D. Kim & Y. H. Kim. (2017). A Survey on Oil Spill and Weather Forecast Using Machine Learning Based on Neural Networks and Statistical Methods. Journal of the Korea Convergence Society, 8(10), 1-8. DOI : 10.15207/JKCS.2017.8.10.001 https://doi.org/10.15207/JKCS.2017.8.10.001
  11. Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng & M. Chen. (2014). Medical image classification with convolutional neural network. International Conference on Control Automation Robotics & Vision. (pp. 844-848). DOI : 10.1109/ICARCV.2014.7064414
  12. O. Janssens et al. (2016). Convolutional Neural Network Based Fault Detection for Rotating Machinery. Journal of Sound and Vibration, 377, 331-345. DOI : 10.1016/J.JSV.2016.05.027
  13. Y. Lecun, L. Bottou, Y. Bengio & P. Haffner. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. DOI : 10.1109/5.726791
  14. P. Liu, X. Qiu & X. Huang. (2016). Recurrent Neural Network for Text Classification with Multi-Task Learning. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.
  15. B. Shi, X. Bai & C. Yao. (2017). An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2297-2304. DOI : 10.1109/TPAMI.2016.2646371
  16. Y. G. Kim & E. Y. Cha. (2016). Streamlined GoogLeNet Algorithm Based on CNN for Korean Character Recognition. Journal of the Korea Institute of Information and Communication Engineering, 20(9), 1657-1685. DOI : 10.6109/jkiice.2016.20.9.1657
  17. B. Shi, M. Yang, X. Wang. P. Lyu, C. Yao & X. Bai (2019). ASTER: An Attentional Scene Text Recognizer with Flexible Rectification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(9), 2035-2048. DOI : 10.1109/TPAMI.2018.2848939