DOI QR코드

DOI QR Code

A Study on Nobel SUNBLOCK Materials Containing an Active Ingredient Extracted from Symbiodinium

심바이오디니움으로부터 추출된 유효성분을 함유하는 신규 SUN BLOCK 물질에 관한 연구

  • Kim, Dong-Myong (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Jung, Ju-Yeong (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Lee, Hyung-Kon (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Park, Sang-Keun (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Kwon, Yong-Sung (Biotechnology Research Institute, KJM Bio Ltd) ;
  • Yang, Seung-Koo (R&D Center of Aloe, Kim Jung Moon Aloe Ltd) ;
  • Han, In-Suk (Department of Chemistry, College of Natural Sciences, Hanyang University)
  • 김동명 ((주)케이제이엠바이오 바이오연구소) ;
  • 정주영 ((주)케이제이엠바이오 바이오연구소) ;
  • 이형곤 ((주)케이제이엠바이오 바이오연구소) ;
  • 박상근 ((주)케이제이엠바이오 바이오연구소) ;
  • 권용성 ((주)케이제이엠바이오 바이오연구소) ;
  • 양승구 ((주)김정문알로에) ;
  • 한인석 (한양대학교 화학과)
  • Received : 2020.04.01
  • Accepted : 2020.05.11
  • Published : 2020.06.30

Abstract

Symbiodinium is a dinoflagellate genus that coexists with coral reefs and is known to provide ultraviolet (UV) protection in nature through the synthesis of mycosporin-like amino acids (MAA). In order to develop a natural and ecofriendly sunblock for use in summer resorts, the possibility of using a Symbiodinium microbiome extract or an MAA was investigated. Two sunblocks, one containing 7% Symbiodinium extract and the other containing MAA were prepared to be tested on hairless mice and human skin. In this clinical study, the sun protection factor (SPF) and Protection factor of UV A (PFA) values of the sunblock containing either Symbiodinium extract or MAA were determined. The SPF values of the sunblock containing Symbiodinium extract and MAA were 10.43 and 10.83, respectively, and the PFA values were 3.42 and 3.39, respectively. Based on their PFA values of ≥2, the UV A protection can be graded as PA+ (low) for both the sunblocks. In addition, the UV-blocking extract of Symbiodinium has a low phototoxicity and cytotoxicity, reducing the possibility of a heavy feeling to the skin or a foreign-body sensation caused by residue build-up. The low toxicity feature of the major sunblock component will also prevent side effects, such as allergic reactions. Although Symbiodinium extract or MAA alone do not provide effectiveprotection against UV irradiation, their protection capacity can be complemented by the addition of inorganic UV-protecting compounds.

References

  1. Souza, C., Campos, P. M., Schanzer, S., Albrecht, S., Lohan, S. B., Lademann, J., Darvin, M. E. and Meinke, M. C. 2017. Radical-Scavenging Activity of a Sunscreen Enriched by Antioxidants Providing Protection in the Whole Solar Spectral Range. Skin Pharmacol. and Physiol. 30, 81-89. https://doi.org/10.1159/000458158
  2. Yun, J. S. and Kim, D. M. 2018. Korea Patent. 10-2018-0103402.
  3. Hughes, T. P., Keer, J. T., Alvarez-Noriega, M., Alvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Cantin, N. E., Dalton, S. J., Sommer, B., Torrda, G., Wachenfeld, D. R., Willis, B. L. and Wilson, S. K. 2017. Global warming and recurrent mass bleaching of corals. Nature. 543, 373-377. https://doi.org/10.1038/nature21707
  4. Dan, T., Maxim, Y. G., Colomban, D. V., Swati, N. Y., Allen, J. M., Max, H. and Paul G. F. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl. Acad. Sci. USA. 101, 13531-13535. https://doi.org/10.1073/pnas.0402907101
  5. Kim, D. M., Yun, J. S. and Han, I. S. 2019. Korea Patent. 10-2019-0115490.
  6. Carreto, J. I. and Carignan, M. O. 2011. Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar. Drugs. 9, 387-446. https://doi.org/10.3390/md9030387
  7. Dunlap, W. C. and Shick, J. M. 1998. Ultraviolet radiation absorbing mycosporne-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34, 418-430. https://doi.org/10.1046/j.1529-8817.1998.340418.x
  8. Oren, A. and Gunde-Cimerman, N. 2007. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 269, 1-10. https://doi.org/10.1111/j.1574-6968.2007.00650.x
  9. Coffroth, M. A. and Santhos, S. R. 2005. Genetic deversity of symbiotic dinoflgellates in the genus Smbiodinium. Protist. 156, 19-34. https://doi.org/10.1016/j.protis.2005.02.004
  10. Barker, A. C. 2003. Flexibility and specificity in coral algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Ann. Rev. Ecol., Evol. and Systematics. 34, 661-689. https://doi.org/10.1146/annurev.ecolsys.34.011802.132417
  11. Balskus E. P., Case, R. J. and Walsh, C. T. 2011. The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities. FEMS Microbiol. Ecol. 77, 322-332. https://doi.org/10.1111/j.1574-6941.2011.01113.x
  12. Pope, M. A., Spence, E., Seralvo, V., Gacesa, R., Heidelberger, S., Weston, A. J., Dunlap, W. C., Shick, J. M. and Long, P. F. 2015. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. Chembiochem. 16, 320-327. https://doi.org/10.1002/cbic.201402516
  13. Hu, C., Voller, G., Susmuth, R., Dittmann, E. and Kehr, J. C. 2015. Functional assessment of mycosporine-like amino acids in Microcystis aeruginosa strain PCC 7806. Environ. Microbiol. 17, 1548-1559. https://doi.org/10.1111/1462-2920.12577
  14. Waditee-Sirisattha, R., Kageyama, H., Sopun, W., Tanaka, Y. and Takabe, T. 2014. Identification and upregulation of biosynthetic genes required for accumulation of mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica. Appl. Environ. Microbiol. 80, 1763-1769. https://doi.org/10.1128/AEM.03729-13
  15. Banaszak, A. T., Santos, M. G., LaJeunesse, T. C. and Lesser, M. P. 2006. The distribution of mycosporine-like amino acids(MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, 131-146. https://doi.org/10.1016/j.jembe.2006.06.014
  16. Chung, M. H., Cho, W. S., Lee, K. A., Kim, K. Y., Jung, K. J., Choi, Y. J. and Back J. Y. 2011. Korea Patent. 10-2011-0044494.
  17. Moon, J. C., Jung, H. S., Song, M. Y., Seo, H. H., Kulkarni, A., Suh, S. S., Lee, T. K. and Moh, S. H. 2014. Effect of sun screen utilizing Porphyra-334 derived from Ocean. algae of skin protecttion. J. Korea Acade. Indus. Cooper. Soc. 15, 4272-4278. https://doi.org/10.5762/KAIS.2014.15.7.4272
  18. Kim, D. M., Yun, J. S. and Han, I. S. 2018. Korea Patent. 10-2018-0170393.
  19. Yun, J. S., Kim, D. M. and Han, I. S. 2018. International Patent. PCT/KR 201801163.
  20. Kim D. M., Yun, J. S., Kim, S. J., Choi, H. S. and Han, I. S. 2019. A Novel transdermal delivery system based on a bile acid￾conjugated nanoparticle model for cosmetics. Asian J. Beauty Cosmetol. 17, 81-91. https://doi.org/10.20402/ajbc.2018.0265