DOI QR코드

DOI QR Code

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy

개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향

  • Received : 2020.04.20
  • Accepted : 2020.05.12
  • Published : 2020.06.01

Abstract

Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

References

  1. O. Engler, C. Schafer, O. R. Myhr, 2015, Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA 6016, Mater. Sci. Eng. A, Vol. 639, pp. 65-74. https://doi.org/10.1016/j.msea.2015.04.097
  2. J. Hirsch, T. Al-Samman, 2013, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., Vol. 61, No. 3, pp. 818-843. https://doi.org/10.1016/j.actamat.2012.10.044
  3. P. Jimbert, I. Eguia, I. Perez, M. A. Gutierrez, 2011, Analysis and comparative study of factors affecting quality in the hemming of 6016T4AA performed by means of electromagnetic forming and process characterization, J. Mater. Process. Technol., Vol. 211, No. 5, pp. 916-924. https://doi.org/10.1016/j.jmatprotec.2010.08.022
  4. Y. K. Kim, M. J. Kim, Shae K. Kim, Y. O. Yoon, K. A. Lee, 2017, Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+$Al_2Ca$ added ADC12 (Al-Si-Cu) Alloy, Trans. Mater. Process., Vol. 26, No. 5, pp. 306-313. https://doi.org/10.5228/KSTP.2017.26.5.306
  5. Y. J. Li, S. Brusethaug, A. Olsen, 2006, Influence of Cu on the mechanical properties and precipitation behavior AlSi7Mg0.5 alloy during aging treatment, Scr. Mater., Vol. 54, No. 1, pp. 99-103. https://doi.org/10.1016/j.scriptamat.2005.08.044
  6. J. Z. Yi, Y. X. Gao, P. D. Lee, T. C. Lindley, 2004, Effect of Fe-content of fatigue crack initiation and propagation in a cast aluminum-silicon alloy (A356-T6), Mater. Sci. Eng. A, Vol. 386, No. 1-2, pp. 396-407. https://doi.org/10.1016/S0921-5093(04)00964-5
  7. E. Ogris, A. Wahlen, H. Luchinger, P. J. Uggowitzer, 2002, On the silicon spheroidization in Al-Si alloys, J. Light Met., Vol. 2, No. 4, pp. 263-269. https://doi.org/10.1016/S1471-5317(03)00010-5
  8. A. Tajiri, T. Nozaki, Y. Uematsu, T. Kakiuchi, M. Nakajima, Y. Nakamura, H. Tanaka, 2014, Fatigue limit prediction of large scale cast aluminum alloy A356, Procedia Mater. Sci., Vol. 3, pp. 924-929. https://doi.org/10.1016/j.mspro.2014.06.150
  9. G.-S Ham, M.-S Baek, J.-H. Kim, S.-W. Lee, K.-A. Lee, 2017, Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al-12 wt% Si alloy, Met. Mater. Int., Vol. 23, No. 1, pp. 35-42. https://doi.org/10.1007/s12540-017-6351-3
  10. Z. Li, A. M. Samuel, F. H. Samuel, C. Ravindran, S. Valtierra, H. W. Doty, 2004, Parameters controlling the performance of AA319-type alloys: Part I. Tensile properties, Mater. Sci. Eng. A, Vol. 367, pp. 96-110. https://doi.org/10.1016/j.msea.2003.09.090
  11. J. Pavlovic-Krstic, R. Bahr, G. Krstic, S. Putic, 2009, The effect of mould temperature and cooling conditions on the size of secondary dendrite arm spacing in Al-7Si-3Cu alloy, Metal. J. Metall., Vol. 15, No. 2, pp. 105-113.
  12. K.-S. Park, H.-S. Kim, 2017, Change of Secondary Dendrite Arm Spacing of Hypoeutectic Al-Si Alloys according to Si Content and Cooling Rate, J. Kor. Fou. Soc., Vol. 37, No. 4, pp. 108-114.
  13. F. Grosselle, G. Timelli, F. Bonollo, A. Tiziani, E. D. Corte, 2009, Correlation between microstructure and mechanical properties of Al-Si cast alloys, Metall. Ital., Vol. 101, No. 6, pp. 25-32.
  14. M. B. Djurdjevic, M. A. Grzincic, 2012, The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys, Arch. Fou. Eng., Vol. 12, No. 1, pp. 19-24.
  15. Q.-Z. Dong, Y.-S. Choi, J.-H. Hong, H.-Y. Hwang, 2012, Prediction of mechanical properties of Al alloys with change of cooling rate, China Fou., Vol. 9, No. 4, pp. 381-386.
  16. H. Beumler, A. Hammerstad, B. Wieting, R. DasGupta, 1988, Analysis of modified 319 aluminum alloy, AFS Trans., Vol. 96, pp. 1-12.
  17. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, 2003, Effect of alloying elements on the segregation and dissolution of $CuAl_2$ phase in Al-Si-Cu 319 alloys, J. Mater. Sci., Vol. 38, pp. 1203-1218. https://doi.org/10.1023/A:1022857703995
  18. S. G. Shabestari, F. Shahri, 2004, Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy, J. Mater. Sci., Vol. 39, pp. 2023-2032. https://doi.org/10.1023/B:JMSC.0000017764.20609.0d
  19. A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, L. Lu, 2005, Eutectic modification and microstructure development in Al-Si alloys. Mater. Sci. Eng. A, Vol. 413-414, pp. 243-248. https://doi.org/10.1016/j.msea.2005.09.055
  20. L. Lu, K. Nogita, A. K. Dahle, 2005, Combining Sr and Na addition in hypoeutectic Al-Si foundry alloys, Mater. Sci. Eng. A, Vol. 399, No. 1-2, pp. 244-253. https://doi.org/10.1016/j.msea.2005.03.091
  21. M. F. Ibrahim, E. Samuel, A. M. Samuel, A. M. A. Al-Ahmari, F. H. Samuel, 2011, Metallurgical parameters controlling the microstructure and hardness of Al-Si-Cu-Mg base alloys, Mater. Des., Vol. 32, No. 4, pp. 2130-2142. https://doi.org/10.1016/j.matdes.2010.11.040
  22. H. R. Lashgari, M. Emamy, A. Razaghian, A. A. Najimi, 2009, The effect of strontium on the microstructure, porosity and tensile properties of A356-10%$B_4C$ cast composite, Mater. Sci. Eng. A, Vol. 517, pp. 170-179. https://doi.org/10.1016/j.msea.2009.03.072
  23. S. Derin, Y. Birol, U. Aybarc, 2016, Effect of Strontium Addition on Microstructure and Mechanical Properties of AlSi7Mg0.3 Alloy, Int. J. Metalcast., Vol. 11, No. 4, pp. 688-695.
  24. J. R. Davis, 2001, Alloying: Understanding the Basics, ASM International, Ohio, pp. 351-416.
  25. M. Dehnavi, F. Kuhestani, M. Sabzevar-Haddad, 2015, Cooling Curve Analysis in Binary Al-Cu Alloys: Part I-Effect of Cooling Rate and Copper Content on the Eutectic Formation, Assoc. Metall. Eng. Serbia, Vol. 21, No. 3, pp. 195-205.
  26. I. Aguilera-Luna, M. J. Castro-Roman, J. C. Escobedo-Bocardo, F. A. Garcia-Pastor, M. Herrera-Trejo, 2014, Effect of cooling rate and Mg content on the Al-Si eutectic for Al-Si-Cu-Mg alloys, Mater. Charact., Vol. 95, pp. 211-218. https://doi.org/10.1016/j.matchar.2014.06.009
  27. J.-S. Cho, J.-H. Kim, W.-J. Sim, H.-J. Im, 2012, The Influence of Alloying Elements on the Fluidity of Al-Zn-Mg Alloys, J. Kor. Fou. Soc., Vol. 32, No. 3, pp. 127-132. https://doi.org/10.7777/jkfs.2012.32.3.127
  28. S. W. Choi, H. S. Cho, C. S. Kang, S. Kumai, 2015, Precipitation dependence of thermal properties for Al-Si-Mg-Cu-(Ti) alloy with various heat treatment, J. Alloys Compd., Vol. 647, pp. 1091-1097. https://doi.org/10.1016/j.jallcom.2015.05.201
  29. O. Lashkari, L. Yao, S. Cockcroft, D. Maijer, 2009, X-ray microtomographic characterization of porosity in aluminum alloy A356, Metall. Mater. Trans. A, Vol. 40, pp. 991-999. https://doi.org/10.1007/s11661-008-9778-9
  30. T. Wang, D. An, Q. Zhang, T. Dai, M. Zhu, 2015, Modeling of microporosity formation during solidification of aluminum alloys, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 84, 012046. https://doi.org/10.1088/1757-899X/84/1/012046
  31. V. C. Srivastava, R. K. Mandal, S. N. Ojha, K. Venkateswarlu, 2007, Microstructural modifications induced during spray deposition of Al-Si-Fe alloys and their mechanical properties, Mater. Sci. Eng. A, Vol. 471, No. 1-2, pp. 38-49. https://doi.org/10.1016/j.msea.2007.04.109
  32. H. K. Sung, S. Y. Shin, B. C Hwang, C. G. Lee, N. J. Kim, S. H. Lee, 2010, Effects of Alloying Elements and the Cooling Condition on the Microstructure, Tensile Properties, and Charpy Impact Properties of High-Strength Bainitic Steels, J. Kor. Inst. Met. Mater., Vol. 48, No. 9, pp. 798-806.