DOI QR코드

DOI QR Code

Studies on the Optimal Conditions of Feeding and Light Supply for the Long-Term Cultivation of Meiofauna in the Laboratory

중형저서동물의 실험실 내 장기 배양을 위한 먹이 및 광원의 최적 조건 연구

  • 신아영 (한국해양과학기술원 해양생태연구센터) ;
  • 김동성 (한국해양과학기술원 해양생태연구센터) ;
  • 강태욱 (국립공원공단 국립공원연구원 해양연구센터) ;
  • 오제혁 (한국해양과학기술원 해양생태연구센터)
  • Received : 2020.01.22
  • Accepted : 2020.05.13
  • Published : 2020.05.31

Abstract

In order to culture a life for the physiological and ecological research of the meiofauna, this study aimed to identify the most ideal condition in which the meiofauna can be cultured within a laboratory by setting various environmental conditions. The sediment deposits and seawater were collected from the intertidal zone in Mallipo of the west coast. A aquarium in which the internal environment can be controlled by constantly maintaining the temperature and humidity was fabricated and the culture experiments of the collected meiofauna were conducted together with the sea water and sediment deposits collected. The experiment 1 was conducted after establishing the similar environment as the collecting location. Under the same condition as the experiment 1, the experiment 2 verified a difference between when live foods were supplied and were not. In the experiment 3, the changes in the meiofauna colony were checked according to with or without light and live foods. In the results of culturing experiments, the habitat density and the number of appeared classification groups of the meiofauna colony were relatively higher both in the water tank with supplying the live foods and under the condition of having light in 12-hour cycle than those in the aquarium without live foods and under no light condition. In addition, the habitat density of meiofauna cultured within a laboratory exhibited relatively higher value than that under the natural state.

References

  1. Aller, R.C. and Y. Aller, 1992. Meiofauna and solute transport inmarine muds. Limnol. Oceanogr., 37: 1018-1033. https://doi.org/10.4319/lo.1992.37.5.1018
  2. Balsamo, M., G. Albertelli, V.U. Ceccherelli, R. Coccioni and M.A. Colangelo, 2010. Meiofauna of the Adriatic Sea: current state of knowledge and future perspective. Chem. Ecol., 26: 45-63. https://doi.org/10.1080/02757541003705492
  3. Bonaglia, S., F.J.A. Nascimento, M. Bartoli, I. Klawonn and V. Bruchert, 2014. Meiofauna increases bacterial denitrification in marine sediments. Nature Comm., 5: 5133. https://doi.org/10.1038/ncomms6133
  4. Bongers, T. and H. Ferris, 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends. Ecol. Evol., 14(6): 224-228. https://doi.org/10.1016/S0169-5347(98)01583-3
  5. Braeckman, U., J. Vanaverbeke, M. Vincx, D. van Oevelen and K. Soetaert, 2013. Meiofauna metabolism in suboxic sediments: currently overestimated. PloS One, 8(3): 1-9.
  6. Castel, J., 1992. The meiofauna of coastal lagoon ecosystems and their importance in the food web, Vie Milieu, 42: 125-135.
  7. Ceccherelli, V.U., M. Mistri and P. Franzoi, 1994. Predation impact on the meiobenthic harpacticoid Canuella perplexa in a lagoon of the Po River Delta. Italy, Estuaries, 17: 283-287. https://doi.org/10.2307/1352577
  8. De Morais, L.T. and J.Y. Bodiou, 1984. Predation on meiofauna by juvenile fish in a western Mediterranean flatfish nursery ground, Mar. Biol., 82: 209-215. https://doi.org/10.1007/BF00394104
  9. Duarte, C.M. and J. Cebrian, 1996. The fate of marine autotrophic production. Limnol. Oceanogr., 41: 1758-1766. https://doi.org/10.4319/lo.1996.41.8.1758
  10. Gerlach, S.A., 1971. On the importance of marine meiofauna for benthos communities. Oecologia., 6(2): 176-190. https://doi.org/10.1007/BF00345719
  11. Giere, O., 2009. Meiobenthology. The microscopicmotile fauna of aquatic sediments, 2nd edn. Springer-Verlag, Berlin, pp. 1-512.
  12. Gontikaki, E., D. van Oevelen, K. Soetaert and U. Witte, 2011. Food web flows through a sub-arctic deep-sea benthic community. Prog. Oceanog., 91: 245-259. https://doi.org/10.1016/j.pocean.2010.12.014
  13. Gwyther, J., 2003. Nematode assemblages from Avicennia marina leaf litter in a temperate mangrove forest in south-eastern Australia. Mar. Biol., 142: 289-297. https://doi.org/10.1007/s00227-002-0944-0
  14. Heip, C., G. Duineveld, E. Flach, G. Graf, W. Helder, P.M.J. Herman, M. Lavaleye, J.J. Middelburg, O. Pfannkuche, K. Soetaert, T. Soltwedel, H. de Stigter, L. Thomsen, J. Vanaverbeke and P. de Wilde, 2001. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep-Sea Res. Pt. II., 48: 3223-3243. https://doi.org/10.1016/S0967-0645(01)00038-8
  15. Higgins, R.P. and H. Thiel, 1988. Introduction to the study of meiofauna. Smithsonnian Institution Press, Washington, D.C. London, pp. 1-488.
  16. Ingels, J., A.V. Tchesunov and A. Vanreusel, 2011. Meiofauna in the Gollum channels and the Whittard Canyon, Celtic margin-How local environmental conditions shape nematode structure and function. Plos One, 6(5): 1-15.
  17. Jessup, C.M., R. Kassen, S.E. Forde, B. Kerr, A. Buckling, P.B. Rainey and B.J.M. Bohannan, 2004. Big questions, small worlds: microbial model systems in ecology. Trends. Ecol. Evol., 113(1-2): 444-453.
  18. Kang, T.W., J.H. Oh, J.S. Hong and D.S. Kim, 2016. Effect of the Hebei Spirit oil spill on intertidal meiofaunal communities in Taean, Korea. Mar. Pollut. Bull., 70: 189-196.
  19. Lee, K.W., J.H. Kang and H.G. Park, 2011. Effect of light intensity on survival, growth and productivity of the cyclopoid copepod Paracyclopina nana: A Laboratory study. Kor. J. Fish. Aquat. Sci., 44(6): 671-676.
  20. Lee, M.R., J.A. Correa and J.C. Castilla, 2001. An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chanaral Case. Mar. Pollut. Bull., 42: 606-701.
  21. Li, C.L., X.X. Luo, X.H. Huang and B.H. Gu, 2008. Effects of termperature, salinity, pH, and light on filtering and grazing rates of a calanoid copepod (Schmackeria dubia). Sci. World J., 8: 1219-1227. https://doi.org/10.1100/tsw.2008.153
  22. Lizhe, C., F. Sujing, Y. Jie and Z. Xiping, 2012.Distribution of meiofaunal abundance in relation to environmental factors in Beibu Gulf, South China Sea. Acta. Oceanol. Sin., 31: 92-103. https://doi.org/10.1007/s13131-012-0256-2
  23. Mascart, T., G. Lepoint and M. De Troch, 2013. Meiofauna and harpacticoid copepods in different habitats of a Mediterranean seagrass meadow. J. Mar. Biol. Assoc. U.K., 93: 1557-1566. https://doi.org/10.1017/S0025315413000222
  24. Mascart, T., G. Lepoint, S. Deschoemaeker, M. Binard, F. Remy and M. De Troch, 2015. Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. J. Sea. Res., 95: 149-160. https://doi.org/10.1016/j.seares.2014.07.009
  25. Margalef, R., 1958. Information theory in ecology. General Systems, 3: 36-71.
  26. McLachlan, A., 1978. A quantitative analysis of the meiofauna and chemistry of the redox potential discontinuity zone in a sheltered sandy beach. Estuar. Coast. Shelf. Sci., 7: 275-290. https://doi.org/10.1016/0302-3524(78)90110-X
  27. Nascimento, F.J.A., A.M.L. Karlson, J. Naslund and R. Elmgren, 2011. Diversity of larger consumers enhances interference competition effects on smaller competitors. Oecologia., 166: 337-347. https://doi.org/10.1007/s00442-010-1865-0
  28. Nascimento, F.J.A., J. Naslund and R. Elmgren, 2012. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr., 57(1): 338-346. https://doi.org/10.4319/lo.2012.57.1.0338
  29. Ngo, X.Q., N. Smol and V.A. Cah, 2013. The meiofauna distribution in correlation with environmental characteristics in 5 Mekong estuaries, Vietnam. Cah. Biol. Mar., 54: 71-83.
  30. Pergent, G., J. Romero, C. Pergentmartini, M.A. Mateo and C.F. Boudouresque, 1994. Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser., 106: 139-146. https://doi.org/10.3354/meps106139
  31. Piot, A., C. Nozais and P. Archambault, 2014. Meiofauna affect the macrobenthic biodiversity-ecosystem functioning relationship. Oikos., 123(2): 203-213. https://doi.org/10.1111/j.1600-0706.2013.00631.x
  32. Pusceddu, A., S. Bianchelli, J. Martin, P. Puig, A. Palanques, P. Masqued and R. Danovaro, 2014a. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A., 111: 8861-8866. https://doi.org/10.1073/pnas.1405454111
  33. Pusceddu, A., C. Gambi, C. Corinaldes, M. Scopa and R. Danovaro, 2014b. Relationships between Meiofaunal biodiversity and Prokaryotic Heterotrophic production in different tropical habitats and oceanic regions. Plos. One., 9(3): 1-17.
  34. Rex, M.A., R.J. Etter, J.S. Morris, J. Crouse and C.R. McClain, 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser., 317: 1-8. https://doi.org/10.3354/meps317001
  35. Rowe, G., A. Lohse, F. Hubbard, G.S. Boland, E. Escobar Briones and J. Deming, 2003. Preliminary trophodynamic carbon budget for the Sigsbee deep benthos, northern Gulf of Mexico. Am. Fish. Soc. Symp., 36: 225-238.
  36. Thistle, D., 2001. Harpacticoid copepods are successful in the soft-bottom deep sea. Hydrobiologia., 453(454): 255-259.
  37. Torres-Pratts, H. and N.V. Schizas, 2007. Meiofaunal colonization of decaying leaves of the red mangrove Rhizophora mangle, in Southwestern Puerto Rico. Caribb. J. Sci., 43: 127-137. https://doi.org/10.18475/cjos.v43i1.a12
  38. Wetzel, M.A., J.W. Fleeger and S.P. Powers, 2001. Effects of hypoxia and anoxia on meiofauna: A review with new data from the Gulf ofMexico. In: Rabalais N.N. and R.E. Turner (eds) Coastal hypoxia: consequences for living resources and ecosystems. Coast. Estuar. Stud., 58: 165-184.
  39. Woodward, G., 2010. Integrative ecology: from molecules to ecosystems. Volume 43 advances in ecological research. Academic Press, London, pp. 1-348.
  40. Zeppilli, D., J. Sarrazin, D. Leduc, P. Martinez Arbizu, D. Fontaneto and C. Fontanier, 2015. Is the meiofauna a good indicator for climate change and anthro-pogenic impacts? Mar. Biodiv., 45: 505-535. https://doi.org/10.1007/s12526-015-0359-z