Trace Metals in Surface Sediments of Garolim Bay, Korea

가로림만 표층 퇴적물 내 미량금속 분포 특성

  • PARK, KYOUNGKYU (Department of Marine Environmental Science, Chungnam National University) ;
  • CHOI, MANSIK (Department of Marine Environmental Science, Chungnam National University) ;
  • JOE, DONGJIN (Department of Marine Environmental Science, Chungnam National University) ;
  • JANG, DONGJUN (Department of Marine Environmental Science, Chungnam National University) ;
  • PARK, SOJUNG (Department of Marine Environmental Science, Chungnam National University)
  • 박경규 (충남대학교 해양환경과학과) ;
  • 최만식 (충남대학교 해양환경과학과) ;
  • 조동진 (충남대학교 해양환경과학과) ;
  • 장동준 (충남대학교 해양환경과학과) ;
  • 박소정 (충남대학교 해양환경과학과)
  • Received : 2020.03.31
  • Accepted : 2020.05.20
  • Published : 2020.05.31


In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.


  1. Calmano, W., J. Hong and U. Forstner, 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. & Tech., 28(8-9): 223-235.
  2. Calvert, S.E., 1976. Chemical Oceanography. Vol. 6. Elsevier, pp. 187-280.
  3. Cha, H.J., M.S. Choi, C.B. Lee and D.H. Shin, 2007. Geochemistry of surface sediments in the southwestern East/Japan Sea. J. of Asian Earth Sci., 29(5-6): 685-697.
  4. Chae, J.S., M.S. Choi, Y.H. Song, I.K. Um and J.G. Kim, 2014. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Mar. Poll. Bull., 88(1-2): 373-382.
  5. Chester, R. and F.G. Voutsinou, 1981. The initial assessment of trace metal pollution in coastal sediment. Mar. Poll. Bull., 12: 84-91.
  6. Chester, R., M. Nimmo, G.R. Fones, S. Keyse and Z. Zhang, 2000. Trace metal chemistry of particulate aerosols from the UK mainland coastal rim of the NE Irish sea. Atmos. Environ., 34(6): 949-958.
  7. Cho, Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Mar. Geol., 159: 111-129.
  8. Choi M.S., S.H. Lee, C.B. Lee and Y.G. Cho, 1996. Trace metals in sediments of the Keum River. Kor. J. of Quatern. Res., 10(1): 27-52.
  9. Choi, M.S., H.I. Yi, S.Y. Yang, C.B. Lee and H.J. Cha, 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Mar. Chem., 107(2): 255-274.
  10. Choi, M.S., J.H. Chun, H.J. Woo and H.I. Yi, 1999. Change of heavy metals and sediment facies in surface sediments of the Shihwa Lake. J. of the Kor. Environ. Sci. Soc., 8(5): 593-600.
  11. Divya, P. and M. Kumar, 2018. Heavy metal speciation leaching and toxicity status of a tropical rain fed river Damodar India. Environ. Geochem. and Health, 40(6): 2303-2324.
  12. Fang, T.H., J.Y. Li, H.M. Feng and H.Y. Chen, 2009. Distribution and contamination of trace metals in surface sediments of the East China Sea. Mar. Environ. Res., 68(4): 178-187.
  13. Horowitz, A.J. and K.A. Elrick, 1987. The relation of stream sediement surface area, grain size, and composition to trace element chemistry. App. Geochem., 2: 437-451.
  14. Horowitz, A.J., 1991. A primer on sediment-trace element chemistry(2ed.). CRC Press, 144 pp.
  15. Huang, P., T. Li, A. Li, X. Yu and N. Hu, 2014. Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Conti. Shelf Res., 73: 1-13.
  16. Jeon, S.G. and Y.G. Cho, 2002. Some heavy metal concentration of surface sediments from the southwestern coast of Korea. J. of the Environ. Sci., 11(12): 1299-1305.
  17. Jeong, H., K.T. Kim, E.S. Kim, K. Ra and S.Y. Lee, 2016. Sediment quality assessment for heavy metals in streams around the Shihwa Lake. J. of the Kor. Soc. for Mar. Environ. and Energy, 19(1): 25-36.
  18. Kim, K.T., H.S. Shin, C.R. Lim, Y.G. Cho, G.H. Hong, S.H. Kim, D.B. Yang and M.S. Choi, 2000. Geochemistry of Pb in surface sediments of the Yellow Sea; contents and speciation. J. of the Kor. Soc. of Oceanogr., 35: 179-191.
  19. Lee, J.H., J.S. Yi, B.S. Kim, C.B. Lee and C.H. Koh, 1998. Characteristics of Metal Distribution in the Sediment in Kyeonggi Bay, Korea. J. of the Kor. Soc. of Oceanogr., 3(3): 103-111.
  20. Lee, M.K., W. Bae, I.K. Um, H.S. Jung, 2004. Characteristics of heavy metal distribution in sediments of Youngil Bay, Korea. Environ. Engin. Res., 26(5): 543-551.
  21. Li, X., L. Liu, Y. Wang, G. Luo, X. Chen, X. Yang, B. Gao and X. He, 2012. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PLos ONE, 7(6): e39690.
  22. Lim, D., J.Y. Choi, H.S. Jung, H.Y. Choi and Y.O. Kim, 2007. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean and Polar Res., 29(4): 379-389.
  23. Loring, D.H., 1990. Lithium-a new approach for the granulometric normalization of trace metal data. Mar. Chem., 29: 155-168.
  24. Nam, H.J., S. Heo, S.Y. Park, U.K. Hwang, J.S. Park and H.K. Lee, 2012. The physico-chemical characteristics in the Garorim Bay, Korea. J. of the Kor. Soc. of Mar. Environ. & Safety, 18(2): 101-114.
  25. Park, J.K., M.S. Choi, Y. Song and D.I. Lim, 2017. Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea Coast. Ocean Sci. J., 52(2): 177-192.
  26. Park, S.Y., H.C. Kim, P.J. Kim, G.S. Park, J.Y. Ko, S.B. Jeon, S.M. Lee and J.S. Park, 2009. Long-term variation and characteristics of water quality in the Garolim coastal areas of Yellow Sea, Korea. J. of the Kor. Soc. of Mar. Environ. & Safety, 15(4): 315-328.
  27. Ra, K., K.T. Kim, E.S. Kim, E.J. Won, K.I. Lim, S.Y. Park and K.H. Shin, 2009. Geochemistry of trace metals in Shihwa Lake sediment. Kor. Soc. for Mar. Environ. & Energy, 175-180.
  28. Ra, K., E.S. Kim, J.K. Kim, K.T. Kim, J.M. Lee and E.Y. Kim, 2013. Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea. Ocean and Polar Res., 35(2): 69-83.
  29. Ridgway, J. and G. Shimmield, 2002. Estuaries as Repositories of Historical Contamination and their Impact on Shelf Seas. Est. Coast. and Shelf Sci., 55(6): 903-928.
  30. Roussiez, V., W. Ludwig, J.-L. Probst and A. Monaco, 2005. Background levels of heavy metals in surficial sediments of the Gulf of Lions(NW Mediterranean): An approach based on $^{133}Cs$ normalization and lead isotope measurements. Environ. Poll., 138: 167-177.
  31. Schulz H.D. and M. Zabel, 2006. Marine Geochemistry(2ed.). Springer Verlag. 574 pp.
  32. Schropp, S.J., F.G. Lewis, H.L. Windom and J.D. Ryan, 1990. Interpretation of metal concentrations in estuarine sediments of Florida using Aluminum as a reference element. Estuaries, 13(3): 227-235.
  33. Shin, D.H., H.I. Yi, S.J. Han, J.K. Oh and S.J. Kwon, 1998. Transport paths of surface sediment on the tidal flat of Garolim Bay, West coast of Korea. J. of the Kor. Soc. of Oceanogr., 3(2): 59-70.
  34. Song, Y. and M.S. Choi, 2009. REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chem. Geol., 266: 328-342.
  35. Song, Y., M.S. Choi and Y.W. Ahn, 2011. Trace metals in Chun-su Bay sediments. J. of the Kor. Soc. of Oceanogr., 16: 169-179.
  36. Song, Y., M.S. Choi, J.Y. Lee and D.J. Jang, 2014. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci. of the Total Environ., 482: 80-91.
  37. Song, Y. and M.S. Choi, 2017. Assessment of heavy metal contamination in sediments along the coast of South Korea using Cs-normalized background concentrations. Mar. Poll. Bull., 117: 532-537.
  38. Sun, C.I., Y.J. Lee, J.H. An and Y.W. Lee, 2014. Speciation and ecological risk assessment of trace metals in surface sediments of the Masan Bay. J. of the Kor. Soc. of Oceanogr., 19(2): 155-163.
  39. Sun, C.I., D.J. Kim, Y.W. Lee and S.S. Kim, 2015. Pollution and ecological risk assessment of trace metals in surface sediments of the Ulsan-Onsan Coast. J. of the Kor. Soc. for Mar. Environ. & Energy, 18: 245-253.
  40. Szefer, P., G.P. Glasby, J. Pempkowiak and R. Kaliszan, 1995. Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem. Geol., 120: 111-126.
  41. Um, I.K., D.I. Lim, M.K. lee, S.K. Jeon and H.S. Jung, 2003. Spatial variability and contents of metals in the surficial sediments of Youngil Bay, East Coast of Korea. J. of Kor. Earth Sci. Soc., 24(5): 477-490.
  42. Um, I.K., M.S. Choi, J.J. Bahk and Y.H. Song, 2013. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea. Mar. Geol., 346: 208-219.
  43. Wi, C.W., J.H. Lee and H.C. Shin, 2014. Spatio-temporal distribution of benthic polychaetous communities and their health conditions in Garolim Bay, West coast of Korea. J. of the Kor. Soc. of Oceanogr., 19(4): 256-264.
  44. Woo, H.J., J.H. Ryu and J.H. Cho, 2009. Hydro-hypsographic analysis for understanding of flushing characteristics in Garolim Bay. J. of Wetlands Res., 11(2): 39-46.
  45. Yang, S.Y., H.S. Jung, D.I. Lim and C.X. Li, 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Sci. Rev., 63(1-2): 93-120.
  46. Yuan, C., J. Shi, B. He, J. Liu, L. Liang and G. Jiang, 2004. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ. Int., 30(6): 769-783.
  47. Yuan, X., H. Huang, G. Zeng, H. Li, J. Wang, C. Zhou, H. Zhu, X. Pei, Z. Liu and Z. Liu, 2011. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Biores. Technol., 102(5): 4104-4110.
  48. Yuan, H., J. Song, X. Li, N. Li and L. Duan, 2012. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Mar. Poll. Bull., 64(10): 2151-2159.