DOI QR코드

DOI QR Code

Investigation of flow-regime characteristics in a sloshing pool with mixed-size solid particles

  • Cheng, Songbai (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University) ;
  • Jin, Wenhui (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University) ;
  • Qin, Yitong (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University) ;
  • Zeng, Xiangchu (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University) ;
  • Wen, Junlang (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University)
  • Received : 2019.05.23
  • Accepted : 2019.11.04
  • Published : 2020.05.25

Abstract

To ascertain the characteristics of pool sloshing behavior that might be encountered during a core disruptive accident of sodium-cooled fast reactors, in our earlier work several series of experiments were conducted under various scenarios including the condition with mono-sized solid particles. It is found that under the particle-bed condition, three typical flow regimes (namely the bubble-impulsion dominant regime, the transitional regime and the bed-inertia dominant regime) could be identified and a flow-regime model (base model) has been even successfully established to estimate the regime transition. In this study, aimed to further understand this behavior at more realistic particle-bed conditions, a series of simulated experiments is newly carried out using mixed-size particles. Through analyses, it is verified that for present scenario, by applying the area mean diameter, our previously-developed base model can provide the most appropriate predictive results among the various effective diameters. To predict the regime transition with a form of extension scheme, a correction factor which is based on the volume-mean diameter and the degree of convergence in particle-size distribution is suggested and validated. The conducted analyses in this work also indicate that under certain conditions, the potential separation between different particle components might exist during the sloshing process.

References

  1. A.M. Tentner, E. Parma, T. Wei, R. Wigeland, Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation, ANL-GENIV-128, Argonne National Laboratory, Argonne, USA, 2010.
  2. S. Cheng, P. Gong, S. Wang, J. Cui, Y. Qian, T. Zhang, G. Jiang, Investigation of flow regime in debris bed formation behavior with non-spherical particles, Nucl. Eng. Tech. 50 (1) (2018) 43-53. https://doi.org/10.1016/j.net.2017.09.003
  3. Y. Yamano, Y. Onoda, Y. Tobita, Transient heat transfer characteristics between molten fuel and steel with steel boiling in the CABRI-TPA2 test, Nucl. Technol. 165 (2) (2009) 145-165. https://doi.org/10.13182/NT09-A4082
  4. T.G. Theofanous, C.R. Bell, An assessment of Clinch River breeder reactor core disruptive accident energetics, Nucl. Technol. 93 (3) (1986) 215-228.
  5. W. Maschek, C. Munz, L. Meyer, Investigations of sloshing fluid motions in pools related to recriticalities in liquid-metal fast breeder reactor core meltdown accidents, Nucl. Technol. 98 (1) (1992) 27-43. https://doi.org/10.13182/NT92-A34648
  6. T. Suzuki, Y. Tobita, K. Kawada, H. Tagami, J. Sogabe, K. Matsuba, K. Ito, H. Ohshima, A preliminary evaluation of unprotected loss-of-flow accident for a prototype fast-breeder reactor, Nucl. Eng. Tech. 47 (2015) 240-252. https://doi.org/10.1016/j.net.2015.03.001
  7. S. Cheng, S. Li, K. Li, T. Zhang, An experimental study on pool sloshing behavior with solid particles, Nucl. Eng. Tech. 51 (2019) 73-83. https://doi.org/10.1016/j.net.2018.09.016
  8. S. Cheng, T. Zhang, C. Meng, T. Zhu, Y. Chen, Y. Dong, X. Chen, Y. Ye, A comparative study on local fuel-coolant interactions in a liquid pool with different interaction modes, Ann. Nucl. Energy 132 (2019) 258-270. https://doi.org/10.1016/j.anucene.2019.04.048
  9. H. Yamano, T. Suzuki, Y. Tobita, T. Matsumoto, K. Morita, Validation of the SIMMER-IV severe accident computer code on three-dimensional sloshing behavior, in: The Eighth Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS8), 2012. Beppu, Japan, Dec. 9-12.
  10. K. Morita, T. Matsumoto, Y. Emura, T. Abe, I. Tatewaki, H. Endo, Investigation on sloshing response of liquid in a 2D pool against hydraulic disturbance, in: The Ninth Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS9), 2014. Buyeo, Korea, November 16-19.
  11. S. Cheng, S. Li, K. Li, N. Zhang, T. Zhang, A two-dimensional experimental investigation on the sloshing behavior in a water pool, Ann. Nucl. Energy 114 (2018) 66-73.
  12. S. Cheng, S. Li, K. Li, T. Zhang, N. Zhang, X. Li, F. Liang, Prediction of flowregime characteristics in pool sloshing behavior with solid particles, Ann. Nucl. Energy 121 (2018) 11-21. https://doi.org/10.1016/j.anucene.2018.07.017
  13. H. Yamano, S. Fujita, Y. Tobita, K. Kamiyama, S. Kondo, K. Morita, E.A. Fischer, D.J. Brear, N. Shirakawa, X. Cao, M. Sugaya, M. Mizuno, S. Hosono, T. Kondo, W. Maschek, E. Kiefhaber, G. Buckel, A. Rineiski, M. Flad, T. Suzuki, P. Coste, S. Pigny, J. Louvet, T. Cadiou, SIMMER-III: a Computer Program for LMFR Core Disruptive Accident Analysis, Version 3.a Model Summary and Program Description, JNC-TN-9400-2003-071, Japan Nuclear Cycle Development Institute, Ibaraki, Japan, 2003.
  14. M. Abbass, Estimated equations for water flow through packed bed of multisize particles, Al-Qadisiya Journal for Engineering Sciences 2 (4) (2009) 779-798.
  15. L. Li, S. Gong, W. Ma, Experimental study of two-phase flow regime and pressure drop in a particulate bed packed with multi-diameter particles, Nucl. Technol. 177 (2012) 107-118. https://doi.org/10.13182/NT12-A13331
  16. L. Phan, P. Ngo, F. Matsuoka, R. Miura, T. Matsumoto, K. Morita, Experimental study on self-leveling behavior of binary-mixed particles in cylindrical bed using gas-injection method, in: 12th International Topical Meeting on Reactor Thermal-Hydraulics, Operation, and Safety (NUTHOS-12), 2018. Qingdao, China, Oct 14-18.
  17. M. Sheikh, E. Son, M. Kamiyama, T. Morioa, T. Matsumoto, K. Morita, K. Matsuba, K. Kamiyama, T. Suzuki, Sedimentation behavior of mixed solid particles, J. Nucl. Sci. Technol. 55 (6) (2018) 623-633. https://doi.org/10.1080/00223131.2017.1419888
  18. S. Cheng, D. Hirahara, Y. Tanaka, Y. Gondai, B. Zhang, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, T. Suzuki, Y. Tobita, Experimental investigation of bubbling in particle beds with high solid holdup, Exp. Therm. Fluid Sci. 35 (2) (2011) 405-415. https://doi.org/10.1016/j.expthermflusci.2010.11.003
  19. K. Koide, K. Horibe, H. Kawabata, S. Ito, Critical gas velocity required for complete suspension of solid particles in solid-suspended bubble column with draught tube, J. Chem. Eng. Jpn. 17 (4) (1984) 368-374. https://doi.org/10.1252/jcej.17.368
  20. K. Koide, T. Yasuda, S. Iwamoto, E. Fukuda, Critical gas velocity required for complete suspension of solid particles in solid-suspended bubble columns, J. Chem. Eng. Jpn. 16 (1) (1983) 7-12. https://doi.org/10.1252/jcej.16.7
  21. M. Abraham, A. Khare, S. Sawant, J. Joshi, Critical gas velocity for suspension of solid particles in three-phase bubble columns, Ind. Eng. Chem. Res. 31 (4) (1992) 1136-1147. https://doi.org/10.1021/ie00004a024
  22. R.G. Holdich, Fundamentals of Particle Technology, Midland Information Technology & Publishing, UK, 2002.
  23. L. Fan, C. Zhu, Principles of Gas-Solid Flows, Cambridge University Press, UK, 1998.
  24. S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89-94.
  25. J. Trahan, A. Graziani, D. Goswami, E. Stefanakos, C. Jotshi, N. Goel, Evaluation of pressure drop and particle sphericity for an air-rock bed thermal energy storage system, Energy Procedia 57 (2014) 633-642. https://doi.org/10.1016/j.egypro.2014.10.218
  26. S. Cheng, H. Tagami, H. Yamano, T. Suzuki, Y. Tobita, S. Taketa, S. Nishi, T. Nishikido, B. Zhang, T. Matsumoto, K. Morita, An investigation on debris bed self-leveling behavior with non-spherical particles, J. Nucl. Sci. Technol. 51 (9) (2014) 1096-1106. https://doi.org/10.1080/00223131.2014.910478
  27. D. Geldart, Estimation of basic particle properties for use in fluid-particle process calculations, Powder Technol. 60 (1) (1990) 1-13. https://doi.org/10.1016/0032-5910(90)80099-K
  28. D. Geldart, Gas Fluidization Technology, Wiley, Chichester, UK, 1987.