DOI QR코드

DOI QR Code

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei (School of Physical Sciences, University of Science and Technology of China) ;
  • Zhang, Xue (School of Physical Sciences, University of Science and Technology of China) ;
  • Chen, Hongli (School of Physical Sciences, University of Science and Technology of China)
  • Received : 2019.08.14
  • Accepted : 2019.10.31
  • Published : 2020.05.25

Abstract

Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

References

  1. J. Zhang, A review of steel corrosion by liquid lead and leadebismuth, Corros. Sci. 51 (6) (2009) 1207-1227.
  2. J. Pacio, M. Daubner, F. Fellmoser, K. Litfin, T. Wetzel, Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers, Nucl. Eng. Des. 301 (2016) 111-127.
  3. J.L. Courouau, P. Trabuc, G. Laplanche, P. Deloffre, P. Taraud, M. Ollivier, R. Adriano, S. Trambaud, Impurities and oxygen control in lead alloys, J. Nucl. Mater. 301 (1) (2002) 53-59.
  4. C. Fazio, V. Sobolev, A. Aerts, S. Gavrilov, K. Lambrinou, P. Schuurmans, A. Gessi, P. Agostini, A. Ciampichetti, L. Martinelli, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies-2015 Edition, Organisation for Economic Co-Operation and Development, 2015.
  5. J. Lim, G. Manfredi, A. Marien, J. Van den Bosch, Performance of potentiometric oxygen sensors with LSM-GDC composite electrode in liquid LBE at low temperatures, Sens. Actuators B Chem. 188 (2013) 1048-1054.
  6. L. Martinelli, F. Balbaud-Celerier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, G. Picard, Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid PbeBi eutectic alloy (Part I), Corros. Sci. 50 (9) (2008) 2523-2536.
  7. L. Martinelli, F. Balbaud-Celerier, A. Terlain, S. Bosonnet, G. Picard, G. Santarini, Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470$^{\circ}C$ (Part II), Corros. Sci. 50 (9) (2008) 2537-2548.
  8. L. Martinelli, F. Balbaud-Celerier, G. Picard, G. Santarini, Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III), Corros. Sci. 50 (9) (2008) 2549-2559.
  9. I. Hwang, J. Lim, Structural Developments for Lead-Bismuth Cooled Fast Reactors, PEACER and PASCAR, 2010.
  10. A. Marino, J. Lim, S. Keijers, J. Deconinck, A. Aerts, Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic, J. Nucl. Mater. 506 (2018) 53-62.
  11. A.G. Churbanov, O. Iliev, V.F. Strizhov, P.N. Vabishchevich, Numerical simulation of oxidation processes in a cross-flow around tube bundles, Appl. Math. Model. 59 (2018) 251-271.
  12. J. Xiong, S. Koshizuka, M. Sakai, Turbulence modeling for mass transfer enhancement by separation and reattachment with two-equation eddy-viscosity models, Nucl. Eng. Des. 241 (8) (2011) 3190-3200.
  13. J. Xiong, X. Cheng, Y. Yang, Numerical investigation on mass transfer enhancement downstream of an orifice, Int. J. Heat Mass Transf. 68 (2014) 366-374.
  14. M. van Reeuwijk, M. Hadziabdic, Modelling high Schmidt number turbulent mass transfer, Int. J. Heat Fluid Flow 51 (2015) 42-49.
  15. A. CFX-Solver, Theory Guide, Release ll, 2006.
  16. A. Marino, Numerical Modeling of Oxygen Mass Transfer in the MYRRHA System, 2015.
  17. M. Saito, H. Furuya, M. Sugisaki, Oxidation of SUS-316 stainless steel for fast breeder reactor fuel cladding under oxygen pressure controlled by Ni/NiO oxygen buffer, J. Nucl. Mater. 135 (1) (1985) 11-17.
  18. J. Xiong, X. Cheng, Y. Yang, Numerical analysis on supercritical water heat transfer in a 2$\times$2 rod bundle, Ann. Nucl. Energy 80 (2015) 123-134.
  19. A. stankovskiy, Thermal Power and Neutron Flux Maps of MYRRHA Subcritical Equilibrium Core Design Rev. 1.6, 2017. Internal report SCKCEN/22775186.
  20. V.H. Graber, M. Rieger, Experimentelle Untersuchung des Warmeubergangs an Flussigmetalle (NaK) in parallel durchstromten Rohrbündeln bei konstanter und exponentieller Warmeflussdichteverteilung, 1972.
  21. P.A. Ushakov, A.V. Zhukov, N.M. Matyukhin, Heat Transfer to Liquid Metals in Regular Arrays of Fuel Elements, 1978.
  22. K. Mikityuk, Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles, 2009.
  23. X. Cheng, N.-i. Tak, Investigation on turbulent heat transfer to leadebismuth eutectic flows in circular tubes for nuclear applications, Nucl. Eng. Des. 236 (4) (2006) 385-393.