DOI QR코드

DOI QR Code

Physics study for high-performance and very-low-boron APR1400 core with 24-month cycle length

  • Do, Manseok (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Nguyen, Xuan Ha (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jang, Seongdong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Yonghee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2019.02.07
  • Accepted : 2019.10.28
  • Published : 2020.05.25

Abstract

A 24-month Advanced Power Reactor 1400 (APR1400) core with a very-low-boron (VLB) concentration has been investigated for an inherently safe and high-performance PWR in this work. To develop a high-performance APR1400 which is able to do the passive frequency control operation, VLB feature is essential. In this paper, the centrally-shielded burnable absorber (CSBA) is utilized for an efficient VLB operation in the 24-month cycle APR1400 core. This innovative design of the VLB APR1400 core includes the optimization of burnable absorber and loading pattern as well as axial cutback for a 24-month cycle operation. In addition to CSBA, an Er-doped guide thimble is also introduced for partial management of the excess reactivity and local peaking factor. To improve the neutron economy of the core, two alternative radial reflectors are adopted in this study, which are SS-304 and ZrO2. The core reactivity and power distributions for a 2-batch equilibrium cycle are analyzed and compared for each reflector design. Numerical results show that a VLB core can be successfully designed with 24-month cycle and the cycle length is improved significantly with the alternative reflectors. The neutronic analyses are performed using the Monte Carlo Serpent code and 3-D diffusion code COREDAX-2 with the ENDF/B-VII.1.