DOI QR코드

DOI QR Code

Dimensional Stability, Color Change, and Durability of Boron-MMA Treated Red Jabon (Antochephalus macrophyllus) Wood

  • PRIADI, Trisna (Department of Forest Products, Faculty of Forestry, IPB University) ;
  • ORFIAN, Gema (Department of Forest Products, Faculty of Forestry, IPB University) ;
  • CAHYONO, Tekat Dwi (Faculty of Agriculture, University of Darussalam Ambon) ;
  • ISWANTO, Apri Heri (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara)
  • Received : 2019.12.17
  • Accepted : 2020.04.23
  • Published : 2020.05.25

Abstract

Boron compound had many advantages as wood preservative, but it was prone to leaching. Improving boron preservation was required to extend the service life of fast growing and low durability red jabon (Antochephalus macrophyllus) hardwood. This study aimed to evaluate the dimensional stability, color change and durability of modified red jabon wood by double impregnation with boron and methyl methacrylate (MMA) and heat treatment. Impregnation I used boric acid or borax, and impregnation II used MMA, while heat treatment used temperatures of 90 ℃ or 180 ℃ for 4 hours. The dimensional stability, leachability, water absorption, color change and decay resistance of modified red jabon wood were tested. The results showed that MMA impregnation increased the dimensional stability of red jabon wood, while the leaching and water absorption in the wood significantly reduced. Heating at 180 ℃ caused less water absorption and higher dimensional stability of the wood than that of heating at 90 ℃. Impregnation with boric acid and MMA followed by heating at 90 ℃ resulted in the highest wood ASE, 89.9%. The color change (∆E*) of wood increased significantly after MMA impregnation and heating at 180 ℃. Boric acid impregnation caused more resistant wood than borax impregnation against decay fungi and termites. Impregnation with boric acid and MMA followed with heating at 180 ℃ increased significantly the wood resistance against decay fungi and termites.

References

  1. ASTM 2006. Standard Test Method of Evaluating Wood Preservatives by Field Test with Stakes (ASTM D 1758-06). American Society for Testing and Materials (ASTM) International, ASTM International, West Conshohocken, Pennsylvania.
  2. Aydemir, D., Gunduz, G., Altuntas, E., Ertas, M., Sahin, H.T., Alma, M.H. 2011. Investigating changes in the chemical constituents and dimensional stability of heat-treated hornbeam and uludag fir wood. BioResources 6(2): 1308-1321.
  3. Bekhta, P., Niemz, P. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5): 539-546. https://doi.org/10.1515/HF.2003.080
  4. Bowyer, J.L., Shmulsky, R., Haygreen, J.G. 2007. Forest products and wood science: an introduction. Wiley-Blackwell Publishing, Ames. Iowa(US).
  5. BSN 2014. Standar Nasional Indonesia (SNI) (Indonesian National Standard) 7207-2014. Testing for Wood Resistance to Destructive Organisms. BSN (Badan Standarisasi Nasional) (National Standardization Agency of Indonesia).
  6. Cahyono, T.D., Darmawan, W., Iswanto, A.H., Priadi, T. 2020. Flexural Properties of Heat-Treatment Samama (Anthocephalus macrophyllus) wood Impregnated by Boron, Methyl Methacrylate. Journal of the Korean Wood Science and Technology 48(1): 76-85.
  7. Cahyono, T.D., Darmawan, W., Yanti, H., Iswanto, A.H. 2020. Changes in chemical components with NIR spectroscopy and durability of samama wood treated with boron, methyl methacrylate and heat treatment. IOP Conference Series: Earth and Environmental Science 454: 012094. https://doi.org/10.1088/1755-1315/454/1/012094
  8. Cahyono, T.D., Ohorella, S., Febrianto, F. 2012. Beberapa Sifat Kimia dan Keawetan Alami Kayu Samama (Antocephallus Macrophyllus) terhadap rayap tanah. Ilmu dan Teknologi Kayu Tropis 10(2): 168-178.
  9. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Bahtiar, E.T., Novriyanti, E. 2016. Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Anthocephalus macrophyllus) Veneer. Journal of the Korean Wood Science and Technology 44(2): 828-841. https://doi.org/10.5658/WOOD.2016.44.6.828
  10. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Darmawan, W., Bahtiar, E.T., Ohorella, S., Novriyanti, E. 2015. The quality of 8 and 10 years old samama wood (Anthocephalus macrophyllus). Journal of the Indian Academy of Wood Science 12(1): 22-28. https://doi.org/10.1007/s13196-015-0140-8
  11. Chang, Y.-S., Han, Y., Eom, C.-D., Jeon, S., Yeo, H. 2019. Hygroscopic Property of Heat Treated Yellow Poplar (Liriodendron tulipifera) Wood. Journal of the Korean Wood Science and Technology 47(6): 761-769.
  12. Christie, R.M. 2014. Colour chemistry. Royal Society of Chemistry, Cambridge(UK).
  13. Coto, Z., Wahyudi, I., Hadiyanne, A. 2015. Improving Wood Quality Through Phisical Properties Enhancement for Fast-Growing and Small-Diameter Timber. IPB Press, Bogor(ID).
  14. Cui, W., Kamdem, D.P., Rypstra, T. 2007. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and color changes of artificial weathered wood. Wood and Fiber Science 36(3): 291-301.
  15. Ding, W.-D., Koubaa, A., Chaala, A. 2011. Dimensional stability of methyl methacrylate hardened hybrid poplar wood. BioResources 7(1): 0504-0520.
  16. Dormer, W., Gomes, R., Meek, M.E. 1998. Methyl methacrylate. World Health Organization, Geneva.
  17. Gaff, M., Babiak, M., Kacik, F., Sandberg, D., Turcani, M., Hanzlik, P., Vondrova, V. 2019. Plasticity properties of thermally modified timber in bending-The effect of chemical changes during modification of European oak and Norway spruce. Composites Part B: Engineering 165: 613-625. https://doi.org/10.1016/j.compositesb.2019.02.019
  18. Hadi, Y., Rahayu, I., Dami, S. 2015. Termite resistance of jabon wood impregnated with methyl methacrylate. Journal of Tropical Forest Science 27(1): 25-29.
  19. Hadi, Y., Rahayu, I., Danu, S. 2013. Physical and mechanical properties of methyl methacrylate impregnated jabon wood. Journal of the Indian Academy of Wood Science 10(2): 77-80. https://doi.org/10.1007/s13196-013-0098-3
  20. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of Methyl Methacrylate-Impregnated Wood to Subterranean Termite Attack. Journal of the Korean Wood Science and Technology 46(6): 748-755.
  21. Halawane, J.E. 2015. Prospek pengembangan jabon merah, Anthocephalus macrophyllus (roxb.) havil: solusi kebutuhan kayu masa depan. Balai Penelitian Kehutanan Manado, Badan Penelitian Pengembangan dan Inovasi.
  22. Hidayat, W., Qi, Y., Jang, J.H., Park, B.H., Banuwa, I., Febrianto, F., Kim, N.H. 2017. Color change and consumer preferences towards color of heat-treated Korean white pine and royal paulownia woods. Journal of the Korean Wood Science and Technology 45(2): 213-222. https://doi.org/10.5658/WOOD.2017.45.2.213
  23. Hill, C.A. 2007. Wood modification: chemical, thermal and other processes. John Wiley & Sons, West Sussex, England.
  24. Jebrane, M., Heinmaa, I. 2016. Covalent fixation of boron in wood through transesterification with vinyl ester of carboxyphenylboronic acid. Holzforschung 70(6): 577-583. https://doi.org/10.1515/hf-2015-0118
  25. Kartal, S., Yoshimura, T., Imamura, Y. 2004. Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). International biodeterioration & biodegradation 53(2): 111-117. https://doi.org/10.1016/j.ibiod.2003.09.004
  26. Kartal, S.N., Hwang, W.-J., Imamura, Y. 2007. Water absorption of boron-treated and heat-modified wood. Journal of Wood Science 53(5): 454-457. https://doi.org/10.1007/s10086-007-0877-9
  27. Kartal, S.N., Terzi, E., Yoshimura, T. 2019. Performance of fluoride and boron compounds against drywood and subterranean termites and decay and mold fungi. Journal of Forestry Research.
  28. Kim, Y.K., Kwon, G.J., Kim, A.R., Lee, H.S., Purusatama, B., Lee, S.H., Kang, C.W., Kim, N.H. 2018. Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. Journal of the Korean Wood Science and Technology 46(5): 511-526.
  29. Kocaefe, D., Shi, J.L., Yang, D.-Q., Bouazara, M. 2008. Mechanical properties, dimensional stability, and mold resistance of heat-treated jack pine and aspen. Forest Products Journal 58(6): 88-93.
  30. Koubaa, A., Ding, W.D., Chaala, A., Bouafif, H. 2012. Surface properties of methyl methacrylate hardened hybrid poplar wood. Journal of Applied Polymer Science 123(3): 1428-1436. https://doi.org/10.1002/app.33799
  31. Lee, J.M., Lee, W.H. 2018. Dimensional Stabilization through Heat Treatment of Thermally Compressed Wood of Korean Pine. Journal of the Korean Wood Science and Technology 46(5): 471-485.
  32. Lempang, M. 2014. Sifat dasar dan potensi kegunaan kayu jabon merah. Jurnal Penelitian Kehutanan Wallacea 3(2): 163-175. https://doi.org/10.18330/jwallacea.2014.vol3iss2pp163-175
  33. Lesar, B., Kralj, P., Humar, M. 2009. Montan wax improves performance of boron-based wood preservatives. International Biodeterioration & Biodegradation 63(3): 306-310. https://doi.org/10.1016/j.ibiod.2008.10.006
  34. Li, X.J., Cai, Z.Y., Mou, Q.Y., Wu, Y.Q., Liu, Y. 2011. Effects of Heat Treatment on some Physical Properties of Douglas Fir (Pseudotsuga Menziesii) Wood. Advanced Materials Research 197-198: 90-95. https://doi.org/10.4028/www.scientific.net/AMR.197-198.90
  35. Mohareb, A., Sirmah, P., Desharnais, L., Dumarcay, S., Petrissans, M., Gerardin, P. 2010. Effect of extractives on conferred and natural durability of Cupressus lusitanica heartwood. Annals of forest science 67(5): 504-504. https://doi.org/10.1051/forest/2010006
  36. Muberra, G. 2016. Effects Of Boron Compound on Characteristics of Poly (Methyl Methacrylate) and Its Nanocomposites. Thesis, Middle East Technical University, Ankara, Turkey.
  37. Park, Y., Han, Y., Park, J.-H., Chung, H., Kim, H., Yang, S.-Y., Chang, Y.-S., Yeo, H. 2018. Evaluation of Deterioration of Larix kaempferi Wood Heattreated by Superheated Steam through Field Decay Test for 12 Months. Journal of the Korean Wood Science and Technology 46(5): 497-510.
  38. Priadi, T. 2011. Wood decay hazard analyses of residential buildings in Java Island. Dissertation, Bogor Agricultural University, Bogor(ID).
  39. Priadi, T., Sholihah, M., Karlinasari, L. 2019. Water Absorption and Dimensional Stability of Heattreated Fast-growing Hardwoods. Journal of the Korean Wood Science and Technology 47(5): 567-578.
  40. Priadi, T., Suharjo, A.A.C., karlinasari, L. 2019. Dimensional stability and colour change of heat-treated young teak wood. International Wood Products Journal 10(3): 119-125. https://doi.org/10.1080/20426445.2019.1679430
  41. Romagnoli, M., Cavalli, D., Pernarella, R., Zanuttini, R., Togni, M. 2015. Physical and mechanical characteristics of poor-quality wood after heat treatment. IForest 8(6): 884-891. https://doi.org/10.3832/ifor1229-007
  42. Sahin, H. T., Korkut, S. 2016. Surface colour changes of turkish hazelnut wood caused by heat treatment. Journal of Advances in Biology & Biotechnology 6(1): 1-7.
  43. Salman, S., Petrissans, A., Thevenon, M. F., Dumarcay, S., Perrin, D., Pollier, B., Gerardin, P. 2014. Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products 72(3): 355-365. https://doi.org/10.1007/s00107-014-0787-7
  44. Sandberg, D., Kutnar, A., Mantanis, G. 2017. Wood modification technologies-a review. iForest- Biogeosciences and Forestry 10(6): 895-908. https://doi.org/10.3832/ifor2380-010
  45. Tomak, E.D., Viitanen, H., Yildiz, U.C., Hughes, M. 2011. The combined effects of boron and oil heat treatment on the properties of beech and Scots pine wood. Part 2: Water absorption, compression strength, color changes, and decay resistance. Journal of Materials Science 46(3): 608-615. https://doi.org/10.1007/s10853-010-4860-2
  46. Wei, Y., Wang, M., Zhang, P., Chen, Y., Gao, J., Fan, Y. 2017. The role of phenolic extractives in color changes of locust wood (Robinia pseudoacacia) during heat treatment. BioResources 12(4): 7041-7055.
  47. Williams, L.H., Amburgey, T.L. 1987. Integrated protection against lyctid beetle infestations. IV. Resistance of boron-treated wood (Virola spp.) to insect and fungal attack. Forest products journal 2(37): 10-17.
  48. Yalinkilic, M.K., Tsunoda, K., Takahashi, M., Gezer, E.D., Dwianto, W., Nemoto, H. 1998. Enhancement of biological and physical properties of wood by boric acid-vinyl monomer combination treatment. Holzforschung 52(6): 667-672. https://doi.org/10.1515/hfsg.1998.52.6.667