DOI QR코드

DOI QR Code

Properties of a New Adhesive Composed of Gambir-Sucrose

  • SUCIPTO, Tito (Department of Forest Product Technology, Faculty of Forestry, Universitas Sumatera Utara) ;
  • WIDYORINI, Ragil (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • PRAYITNO, Tibertius Agus (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • LUKMANDARU, Ganis (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2019.10.02
  • Accepted : 2020.04.16
  • Published : 2020.05.25

Abstract

Gambir is a non-wood forest product with a potential of being used as wood adhesive, due to about 33% catechin in it. Meanwhile, catechins and sucrose have not been studied as adhesives. Therefore, basic characteristics of gambir-sucrose adhesives were investigated. In this research, adhesives were prepared by dissolving gambir and sucrose in distilled water, at different blending ratios of the gambir/sucrose such as 100/0, 75/25, 50/50, and 25/75 wt%. Furthermore, gas chromatography-mass spectrometry (GC-MS) was employed to determine the gambir chemical compositions, and Fourier transform-infrared (FTIR) spectroscopy was carried out to identify chemical bonds. Particleboards with a target density of 0.8 g/㎤ were then manufactured by hot-pressing for 10 min at 200℃. The internal bond (IB) strength of particleboard was subsequently measured. Based on the GC-MS analysis, 31.11% of catechin was identified. In addition, the viscosity, density, solid content, and gelation time of the adhesives, and insoluble matter content (IMC) in boiling water were 7.30~33.24 mPa.s, 1.2~1.3 g/㎤, 25.56~28.44%, 73~420 min, and 29.75~62.10%, respectively. Adding sucrose to the adhesive was observed to raise the IMC from 49.05 to 62.10%, at 180℃ and 200℃. FT-IR analysis showed that the gambir absorption peaks occurred at approximately 1620 cm-1, assigned to the C=O stretching of 5-hydroxymethylfurfural, which tended to increase with the addition of sucrose. The reaction between gambir and sucrose was observed in the form of the dimethylene ether bridge. The 25/75 wt% gambir-sucrose adhesives and 200℃ hot-pressed temperature resulted in the highest IB strength (0.89 MPa), and met the requirement of JIS A5908-2003 type 18. Consequently, the gambir-sucrose adhesive could be used as a particleboard adhesive.

References

  1. Ballerini, A., Despres, A., Pizzi, A. 2005. Non-toxic, zero emission tannin-glyoxal adhesives for wood panels. Holz als Roh-und Werkstoff 63(6): 477-478.
  2. Amos. 2010. Kandungan katekin gambir sentra produksi di Indonesia. Jurnal Standardisasi 12(3): 149-155. https://doi.org/10.31153/js.v12i3.152
  3. Chuntanapum, A., and Matsumura, Y. 2009. Formation and tarry material from 5-HMF in subcritical and supercritical water. Industrial & Engineering Chemistry Research 48: 9837-9846. https://doi.org/10.1021/ie900423g
  4. Danielson, B., Simonson, R. 1998. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. Journal of Adhesion Science and Technology 12: 923-939. https://doi.org/10.1163/156856198X00542
  5. Eastaugh, N., Walsh, V., Chaplin, T., Siddall, R. 2004. Pigment compendium: A dictionary of historical pigments. Elsevier Butterworth-Heinemann, Oxford UK.
  6. Fathanah, U., Sofyana. 2013. Pembuatan papan partikel (particleboard) dari tandan kosong sawit dengan perekat kulit akasia dan gambir. Journal of Chemical Engineering Environment 9(2): 137-143.
  7. Febrianto, F., Royama, L.I., Hidayat, W., Bakar, E.S., Kwon, J.H., Kim, N.H. 2009. Development of oriented strand board from acacia wood (Acacia mangium Willd): Effects of pretreatment of strand and adhesive content on the physical and mechanical properties of OSB. Journal of the Korean Wood Science and Technology 37(2): 121-127.
  8. Ferdinal, N. 2014. A simple purification method of catechin from gambir. International Journal on Advanced Science, Engineering and Information Technology 4(6): 53-55.
  9. Foyer, G., Chanfi, B.H., Virieux, D., David, G., Caillol, S. 2016. Aromatic dialdehyde precursors from lignin derivatives for the synthesis of formaldehyde-free and high char yield phenolic resins. European Polymer Journal 77: 65-74. https://doi.org/10.1016/j.eurpolymj.2016.02.018
  10. Hendrik, J., Hadi, Y.S., Massijaya, M.Y., Santoso, A., Pizzi, A. 2019. Properties of glued laminated timber made from fast-growing species with mangium tannin and phenol resorcinol formaldehyde adhesives. Journal of the Korean Wood Science and Technology 47(3): 253-264.
  11. Hiller, K., Melzig, M.F. 2007. Die grose enzyklopaedie der arzneipflanzen und drogen. Elsevier Spektrum Verlag, Heidelberg.
  12. Hong, M.K., Park, B.D., 2017a. Effect of urea-formaldehyde resin adhesive viscosity on plywood adhesion. Journal of the Korean Wood Science and Technology 45(2): 223-231. https://doi.org/10.5658/WOOD.2017.45.2.223
  13. Hong, M.K., Park, B.D., Kim, K.H., Shim, K. 2017b. Performance of melamine-urea-formaldehyde resin adhesives at various melamine contents for bonding glued laminated timber under high frequency heating. Journal of the Korean Wood Science and Technology 45(4): 409-418.
  14. Intanwijaya International. 2019. Phenol-formaldehyde resin IP-100 type specification. PT. Intanwijaya International, Tbk., Semarang.
  15. Iswanto, A.H., Febrianto, F., Hadi, Y.S., Ruhendi, S., Hermawan, D., Fatriasari, W. 2018. Effect of particle pre-treatment on properties of jatropha fruit hulls particleboard. Journal of the Korean Wood Science and Technology 46(2): 155-165.
  16. Iswanto, A.H., Simarmata, J., Fatriasari, W., Azhar, I., Sucipto, T., Hartono, R. 2017. Physical and mechanical properties of three-layer particleboards bonded with UF and UMF adhesives. Journal of the Korean Wood Science and Technology 45(6): 787-796.
  17. JIS. 2003. Japanese Industrial Standard A5908: 2003. Particleboards. Japanese Standards Association, Japan.
  18. Kasim, A., Yumarni, Fuadi, A. 2007. Pengaruh suhu dan lama pengempaan pada pembuatan papan partikel dari batang kelapa sawit (Elaeis guineensis Jacq.) dengan perekat gambir (Uncaria gambir Roxb.) terhadap sifat papan partikel. Journal of Tropical Wood Science and Technology 5(1): 17-21.
  19. Kim, S., Lee, Y., Kim, H., Lee, H. 2003. Physicomechanical properties of particleboards bonded with pine and wattle tannin-based adhesives. Journal of Adhesion Science and Technology 17(14): 863-1875.
  20. Lamaming. J., Sulaiman. O., Sugimoto. T., Hashim. R., Said, N., Sato, M. 2013. Influence of chemical components of oil palm on properties of binderless particleboard. BioResources 8(3): 3358-3371.
  21. Lubis, M.A.R., Jeong, B., Park, B.D., Lee, S.M., Kang, E.C. 2019a. Effect of synthesis method and melamine content of melamine-urea-formaldehyde resins on bond-line features in plywood. Journal of the Korean Wood Science and Technology 47(5): 579-586.
  22. Lubis, M.A.R., Park, B.D., Lee, S.M. 2019b. Performance of hybrid adhesives of blocked-pMDI/ melamine-urea-formaldehyde resins for the surface lamination on plywood. Journal of the Korean Wood Science and Technology 47(2): 200-209.
  23. Ministry of Agriculture of Indonesia. 2013. Tree corp estate of Indonesia 2012-2014: Spices and beverage crops. The Directorate General of Estate Crops, Ministry of Agriculture of Indonesia, Jakarta.
  24. Muchtar, H., Yeni, G., Hermianti, W., Diza, Y.H. 2010. Pembuatan konsentrat polifenol gambir (Uncaria gambir Roxb) sebagai bahan antioksidan pangan. Jurnal Riset Industri 4: 71-82.
  25. Ophardt, C.E. 2003. Sucrose. VChemBook. Elmuhurst College, Illinois USA.
  26. Pichelin, F., Nakatani, M., Pizzi, A. 2006. Structural beams from thick wood panels bonded industrially with formaldehyde-free tannin adhesives. Journal of Forest Products 56: 31-36.
  27. Pizzi, A. 1994. Advance wood adhesives technology. Marcel Dekker Inc., New York
  28. Pizzi, A. 2006. Recent developments in eco-efficient bio-based adhesives for wood bonding: Opportunities and issues. Journal of Adhesion Science and Technology 20(8): 829-846. https://doi.org/10.1163/156856106777638635
  29. Pizzi, A. 2008. Tannins: Major sources, properties and applications. Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam.
  30. Rahmawati, N., Bakhtiar, A., Putra, D.P. 2012. Isolasi katekin dari gambir (Uncaria gambir (Hunter). Roxb) untuk sediaan farmasi dan kosmetik. Jurnal Penelitian Farmasi Indonesia 1(1): 6-10.
  31. Sabarni. 2015. Teknik pembuatan gambir (Uncaria gambir Roxb) secara tradisional. Elkawnie Journal of Islamic Science and Technology 1(1): 105-112.
  32. Santoso, A. 1997. The effect of tannin addition on phenol formaldehyde on its properties as plywood adhesive. Buletin Penelitian Hasil Hutan 15(2): 109-119.
  33. Santoso, A. 2005. Pemanfaatan lignin dan tannin sebagai alternatif substitusi bahan perekat kayu komposit. Prosiding Simposium Nasional Polimer V, Bandung. pp. 155-164.
  34. Santoso, A., Hadi, Y.S., Malik, J. 2012. Tannin resorcinol formaldehyde as potential glue for the manufacture of plybamboo. Journal of Forestry Research 9(1): 1-6.
  35. Santoso, M., Widyorini, R., Prayitno, T.A., Sulistyo, J. 2017. Bonding performance of maltodextrin and citric acid for particleboard made from nipa fronds. Journal of the Korean Wood Science and Technology 45(4): 432-443.
  36. SNI. 1998. Standar Nasional Indonesia 06-4567-1998. Phenol formaldehyde solution for plywood adhesives. Badan Standardisasi Nasional, Jakarta.
  37. SNI. 2006. Standar Nasional Indonesia 03-2105-2006. Particleboards. Badan Standardisasi Nasional, Jakarta.
  38. Umemura, K. 2013a. Condensed tannin-containing composition which is cured by application of heat and pressure. WO2013018707 A1.
  39. Umemura, K., Hayashi, S., Tanaka, S., Kanayama, K. 2017. Changes in physical and chemical properties of sucrose by the addition of ammonium dihydrogen phosphate. Journal of Japan Adhes. Res. Soc. 53(4): 112-117.
  40. Umemura, K., Sugihara, O., Kawai, S. 2013b. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. Journal of Wood Science 59: 203-208. https://doi.org/10.1007/s10086-013-1326-6
  41. Umemura, K., Sugihara, O., Kawai, S. 2015. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard II: Effect of board density and pressing temperature. Journal of Wood Science 61: 40-44. https://doi.org/10.1007/s10086-014-1437-8
  42. Umemura, K., Ueda, T., Munawar, S.S., Kawai, S. 2011. Application of citric acid as natural adhesive for wood. Journal of Applied Polymer Science 123(4): 1991-1996.
  43. Valenzuela, J., von Leyser, E., Pizzi, A. 2012. Industrial production of pine tannin-bonded particleboard and MDF. European Journal of Wood and Wood Products 70: 735-740. https://doi.org/10.1007/s00107-012-0610-2
  44. Widyorini, R., Nugraha, P.A., Rahman, M.Z.A., Prayitno, T.A. 2016b. Bonding ability of a new adhesive composed of citric acid-sucrose for particleboard. BioResources 11(2): 4526-4535.
  45. Widyorini, R., Umemura, K., Isnan, R., Putra, D.R., Awaludin, A., Prayitno, T.A. 2016a. Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. European Journal of Wood and Wood Products 74(1): 57-65. https://doi.org/10.1007/s00107-015-0967-0
  46. Widyorini, R., Yudha, A.P., Adifandi, Y., Umemura, K., Kawai, S. 2013. Characteristic of bamboo particleboard bonded with citric acid. Wood Research Journal 4(1): 31-35.
  47. Yeni, G., Gumbira-Sa’id, E., Syamsu, K., Mardliyati, E. 2014. Penentuan kondisi terbaik ekstraksi antioksidan dari gambir menggunakan metode respon permukaan. Jurnal Litbang Industri 4: 39-48. https://doi.org/10.24960/jli.v4i1.637.39-48
  48. Zhao, Z., Umemura, K. 2014. Investigation of a new natural particleboard adhesive composed of tannin and sucrose. Journal of Wood Science 60: 269-277. https://doi.org/10.1007/s10086-014-1405-3
  49. Zhao, Z., Umemura, K. 2015. Investigation of a new natural particleboard adhesive composed of tannin and sucrose: 2. Effect of pressing temperature and time on board properties, and characterization of adhesive. BioResources 10(2): 2444-2460.