Dye Decomposition in Seawater using Electro-Fenton Reaction

전기-펜톤 반응을 이용한 해수 중의 염료 분해

  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (Division of Liberal Studies, Daegu University)
  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 창조융합학부)
  • Received : 2020.02.19
  • Accepted : 2020.03.18
  • Published : 2020.04.30


To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.


Supported by : 대구가톨릭대학교


  1. Bovendeur, J., Zwaga, A. B., Lobee, B. G. J., Blom, J. H., 1990, Fixed-bed biofilm reactors in aquaculture water recycle systems: effect of organic matter elimination on nitrification kinetics, Wat. Res., 24, 207-213.
  2. Brillas, E., Cassado, J., 2002, Aniline degradation by electro-Fenton and peroxi-coagulation process using a flow reactor for wastewater treatment, Chemosphere, 47, 241-248.
  3. Cha, H. G., Seo, M. H., Lee, H. Y., Lee, J. H., Lee, D. S., Shin, K. S., Choi, K. H., 2015, Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide, Marine Pollu. Bull., 95, 315-323.
  4. Chou, S., Hou, S., Huang, Y. H., Lee, S. N., Huang, G. H., Huang, C., Treatment of high strength hexamine-containing wastewater by electro-fenton method, Wat. Res., 33, 751-759.
  5. Chung, C. M., Kim, K. I., Shim, N., Park, C. H., Lee, S. H., 2009, A Study on reduction of excess sludhe in activated sludge system from a petrochemical plant using electro Fento process, J. Kor. Soc. Wat. Wastewat., 23, 669-678.
  6. Ganiyua, S. O., Zhou, M., Martinez-Huitlea, C. A., 2018, Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment, Appl. Catal. B: Environ., 235, 103-129.
  7. Ghanbari, F., Moradi, M., 2015, A Comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement, J. Environ. Chem. Eng., 3, 499-506.
  8. Hodgkiess, T., Hanbury, W. T., Law, G. B., Al-Chasham, T. Y., 2001, Effect of hydrocarbon contaminants on the performance of RO membranes, Desalination, 138, 283-289.
  9. Hong, E. K., Jung, Y. M., Kim, D. H., Kang, J. W., 2014, Application of ozonation for seawater treatment, Joint Spring Proceedings of Korean Society Water & Wastewater.Korean Society Water Environment, 224-225.
  10. Isaias, N. P., 2001, Experience in reverse osmosis pretreatment, Desalination, 139(1-3), 57-64.
  11. Jung, Y. M., Hong, E. K., Kang, J. W., 2014, Evaluation of ozonation and electrolysis for ballast water treatment, Procedings of The Korean Society for Marine Environment & Energy, 2370.
  12. Jung, Y. M., Yoon, Y. J., Hong, E. K., Kwon, M. H., Kang, J. W., 2013, Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe, Mar. Pollu. Bull., 72, 71-79.
  13. Kim, D. S., Park, Y. S., 2007, Decolorization of Rhodamine B by Fenton, Fenton-like, and photo-Fenton-like oxidation, J. Environ. Hlth. Sci., 33, 150-157.
  14. Kim, D. S., Park, Y. S., 2008, Hydrogen peroxide generation of DSA for electro-Fenton reaction and removal of Rhodamine B, J. Environ. Hlth. Sci., 34, 175-182.
  15. Kim, D. S., Park, Y. S., 2009, Electrochemical degradation of Phenol by electro-Fenton process, J. Env. Hlth. Sci., 35, 201-208.
  16. Kim, D. S., Park, Y. S., 2011, Effect of disinfection process combination on E. coli deactivation and oxidants generation, J. Environ. Sci., 20, 891-898.
  17. Kim, E. C., 2012, Consideration on the ballast water treatment system technology and its development strategies, J. Kor. Soc. Mar. Environ. Eng., 15, 349-356.
  18. Kim, E. C., Oh, J. H., Lee, S. K., 2012, Consideration on the concentration of the active substances produced by the ballast water treatment system, J. Kor. Soc. Mar. Environ. Eng., 15, 219-226.
  19. Kim, W. H., Mitsumasa, O., 2004, Evaluation of pretreatment processes for dissolved organic carbon removal in a desalination process, J. Kor. Soc. Wat. Qual., 20, 447-451.
  20. Kim, W. S., Cha, S. H., Kim, Y. W., 1993, A Study on the electrolytic treatment of polyvinyl alcohol wastewater, J. Kor. Soc. Wat. Qual., 9, 31-40.
  21. Kim, Y. S., Sung, E. J., 2012, Development trends of ballast water management systems, J. Soc. Nav. Arch. Kor., 49, 40-43.
  22. Korea P&I Club, 2017, The dilemma of shipowners due to the enactment of the ship ballast water management convention and the US regulations, Mar. Kor., 2, 145-147.
  23. Li, M., Feng, C., Hu, W., Zhang, Z., Sugiura, N., 2009, Electrochemical degradation of phenol using electrodes of $Ti/RuO_2$-Pt and $Ti/IrO_2$-Pt, J. Hazard. Mat., 162, 455-462.
  24. Lim, J. L., Shin, H. S., 2000, Effects of pre-oxidation for recirculation of aquaculture wastewater, J. Kor. Soc. Environ. Eng., 22, 103-111.
  25. Moreno-Andres, J., Romero-Martinez, L., Acevedo-Merino, A., Nebot, E., 2016, Determining disinfection efficiency on E. faecalis in saltwater by photolysis of $H_2O_2$: implications for ballast water treatment, Chem. Eng. J., 283, 1339-1348.
  26. Ozcan, A. A., Ozcan, A., 2018, Investigation of applicability of electro-Fenton method for the mineralization of naphthol blue black in water, Chemosphere, 202, 618-625.
  27. Park, Y. S., 2008, Decolorization of a Rhodamine B using Ru-graphite electrode, J. Environ. Sci., 17, 547-553.
  28. Perez, J. F., Sabatino, S., Galia, A., Rodrigo, M. A., Llanos, J., Saez, C., Scialdone, O., 2018, Effect of air pressure on the electro-Fenton process at carbon felt electrodes, Electrochim. Acta, 273, 447-453.
  29. Ren, G., Zhou, M., Liu, M., Ma, L., Yang, H., 2016, A Novel vertical-flow electro-Fenton reactor for organic wastewater treatment, Chem. Eng. J., 298, 55-67.
  30. US NARA (National Archives and Records Administration), 2012, Standards for living organisms in ships, Ballast Water Discharged in U.S. Waters; Final Rule (33 CFR Part 151, 46 CFR Part 162), Federal Register 77, 17254-17320.
  31. Wu, D., You, H., Zhang, R., Chen, C., Lee, D. J., 2011, Ballast waters treatment using UV/Ag-$TiO_2+O_3$ advanced oxidation process with Escherichia coli and Vibrio alginolyticus as indicator microorganisms, Chem. Eng. J., 174, 714-718.
  32. Yavuz, Y., Ogutveren, U. B., 2018, Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes, J. Environ. Manag., 207, 151-158.