Catalytic properties of wheat phytase that favorably degrades long-chain inorganic polyphosphate

  • An, Jeongmin (Department of Animal Science and Technology, Konkuk University) ;
  • Cho, Jaiesoon (Department of Animal Science and Technology, Konkuk University)
  • Received : 2019.01.16
  • Accepted : 2019.04.29
  • Published : 2020.01.01


Objective: This study was conducted to determine catalytic properties of wheat phytase with exopolyphosphatase activity toward medium-chain and long-chain inorganic polyphosphate (polyP) substrates for comparative purpose. Methods: Exopolyphosphatase assay of wheat phytase toward polyP75 (medium-chain polyP with average 75 phosphate residues) and polyP1150 (long-chain polyP with average 1150 phosphate residues) was performed at pH 5.2 and pH 7.5. Its activity toward these substrates was investigated in the presence of Mg2+, Ni2+, Co2+, Mn2+, or ethylenediaminetetraacetic acid (EDTA). Michaelis constant (Km) and maximum reaction velocity (Vmax) were determined from Lineweaver-Burk plot with polyP75 or polyP1150. Monophosphate esterase activity toward p-nitrophenyl phosphate (pNPP) was assayed in the presence of polyP75 or polyP1150. Results: Wheat phytase dephosphorylated polyP75 and polyP1150 at pH 7.5 more effectively than that at pH 5.2. Its exopolyphosphatase activity toward polyP75 at pH 5.2 was 1.4-fold higher than that toward polyP1150 whereas its activity toward polyP75 at pH 7.5 was 1.4-fold lower than that toward polyP1150. Regarding enzyme kinetics, Km for polyP75 was 1.4-fold lower than that for polyP1150 while Vmax for polyP1150 was 2-fold higher than that for polyP75. The presence of Mg2+, Ni2+, Co2+, Mn2+, or EDTA (1 or 5 mM) exhibited no inhibitory effect on its activity toward polyP75. Its activity toward polyP1150 was inhibited by 1 mM of Ni2+ or Co2+ and 5 mM of Ni2+, Co2+, or Mg2+. Ni2+ inhibited its activity toward polyP1150 the most strongly among tested additives. Both polyP75 and polyP1150 inhibited the monophosphate esterase activity of wheat phytase toward pNPP in a dose-dependent manner. Conclusion: Wheat phytase with an unexpected exopolyphosphatase activity has potential as a therapeutic tool and a next-generational feed additive for controlling long-chain polyP-induced inappropriate inflammation from Campylobacter jejuni and Salmonella typhimurium infection in public health and animal husbandry.


Supported by : National Research Foundation of Korea (NRF)


  1. Hassanian SM, Avan A, Ardeshirylajimi A. Inorganic polyphosphate: a key modulator of inflammation. J Thromb Haemost 2017;15:213-8.
  2. Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 2012;119:5972-9.
  3. Kumar A, Gangaiah D, Torrelles JB, Rajashekara G. Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni. World J Gastroenterol 2016;22:7402-14.
  4. Varas MA, Riquelme-Barrios S, Valenzuela C, et al. Inorganic polyphosphate is essential for Salmonella typhimurium virulence and survival in Dictyostelium discoideum. Fron Cell Infect Microbiol 2018;8:8.
  5. Awad WA, Dublecz F, Hess C, et al. Campylobacter jejuni colonization promotes the translocation of Escherichia coli to extra-intestinal organs and disturbs the short-chain fatty acids profiles in the chicken gut. Poult Sci 2016;95:2259-65.
  6. Antunes P, Mourao J, Campos J, Peixe L. Salmonellosis: the role of poultry meat. Clin Microbiol Infect 2016;22:110-21.
  7. Kassaify ZG, Mine Y. Nonimmunized egg yolk powder can suppress the colonization of Salmonella typhimurium, Escherichia coli O157:H7, and Campylobacter jejuni in laying hens. Poult Sci 2004;83:1497-506.
  8. Doyle MP, Erickson MC. Reducing the carriage of foodborne pathogens in livestock and poultry. Poult Sci 2006;85:960-73.
  9. Cruz CS, Costa EP, Machado JA, et al. A soluble inorganic pyrophosphatase from the cattle tick Rhipicephalus microplus capable of hydrolysing polyphosphates. Insect Mol Biol 2018;27:260-7.
  10. Li YD, Awati A, Schulze H, Partridge G. Phytase in non‐ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 2015;95:878-96.
  11. Dionisio G, Holm PB, Pedersen HB. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination. Plant Biotechnol J 2007;5:325-38.
  12. Kilaparty SP, Singh A, Baltosser WH, Ali N. Computational analysis reveals a successive adaptation of multiple inositol polyphosphate phosphatase 1 in higher organisms through evolution. Evol Bioinform Online 2014;10:239-50.
  13. Lorenz B, Schroder HC. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 2001;1547:254-61.
  14. Lemercier G, Espiau B, Ruiz FA, et al. A pyrophosphatase regulating polyphosphate metabolism in acidocalcisomes is essential for Trypanosoma brucei virulence in mice. J Biol Chem 2004;279:3420-5.
  15. Espiau B, Lemercier G, Ambit A, et al. A soluble pyrophosphatase, a key enzyme for polyphosphate metabolism in Leishmania. J Biol Chem 2006;281:1516-23.
  16. Humphrey S, Chaloner G, Kemmett K, et al. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio 2014;5:e01364-14.
  17. Dinarvand P, Hassanian SM, Qureshi SH, et al. Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor. Blood 2014;123:935-45.
  18. Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013;77:582-607.
  19. Inglis GD, Morck DW, McAllister TA, et al. Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. Appl Environ Microbiol 2006;72:4088-95.
  20. Chouchene A, Micard V, Lullien-Pellerin V. Evidence of a synergistic effect between pea seed and wheat grain endogenous phytase activities. J Agric Food Chem 2018;66:12034-41.