DOI QR코드

DOI QR Code

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB)

PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상

  • Lee, Sanghyun (Department of Chemical Engineering, Kwangwoon University) ;
  • Seok, Dohyeong (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeong, Yohan (Department of Chemical Engineering, Kwangwoon University) ;
  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2020.01.15
  • Accepted : 2020.01.29
  • Published : 2020.02.29

Abstract

Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic ($Ni_xPt_{1-x}$) alloy mesocrystals within carbon framework: High-performance catalysts for oxygen reduction and hydrogenation reactions", ACS Appl. Mater. Interfaces, 11, 21435 (2019). https://doi.org/10.1021/acsami.8b21661
  2. D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019). https://doi.org/10.3390/su11133694
  3. F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019). https://doi.org/10.1021/acsami.9b01501
  4. K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon ($Nb-TiO_2-C$) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.055
  5. H. Sohn, D. H. Kim, R. Yi, D. Tang, S.-E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.096
  6. H. Sohn, D. Kim, J. Lee, and S. Yoon, "Facile synthesis of mesostructured $TiO_2$-graphitized carbon ($TiO_2-gC$) composite through the hydrothermal process and its application as the anode of lithium ion batteries", RSC Adv., 6, 39484 (2016). https://doi.org/10.1039/C6RA01614F
  7. D. Tang, Q. Huang, R. Yi, F. Dai, M. L. Gordin, S. Hu, S. Chen, Z. Yu, H. Sohn, J. Song, and D. Wang, "Room-temperature synthesis of mesoporous $Sn/SnO_2$ composite as anode for sodium-ion batteries", Euro. J. Inorg. Chem., 2016, 1950 (2016). https://doi.org/10.1002/ejic.201501441
  8. H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song, and D. Wang, "Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium-sulfur batteries", J. Power Sources, 302, 70 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
  9. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
  10. Y. Sun, N. Liu, and Y. Cui, "Promises and challenges of nanomaterials for lithium-based rechargeable batteries", Nat. Energy, 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
  11. Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T. E. Mallouk, and D. Wang, "Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions", Nat. Mater., 18, 384 (2019). https://doi.org/10.1038/s41563-019-0305-8
  12. Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, "An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes", Adv. Mater., 29, 1605531 (2017). https://doi.org/10.1002/adma.201605531
  13. J. A. Seo, J. K. Koh, J. H. Koh, and J. H. Kim, "Preparation and characterization of plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) graft copolymer electrolyte membranes", Membr. J., 29, 30 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30
  14. Y. Jeong, D. Seok, S. Lee W. H. Shin, and H. Sohn, "Polymer/inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membr. J., In Press (2020).
  15. K. Liu, A. Pei, H. R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C Liu, P. Hsu, Z. Bao, and Y. Cui, "Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer", J. Am. Chem. Soc., 139, 4815 (2017). https://doi.org/10.1021/jacs.6b13314
  16. W. Liu, W. Li, D. Zhuo, G. Zheng, Z. Lu, K. Liu, and Y. Cui, "Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes", ACS Cent. Sci., 3, 135 (2017). https://doi.org/10.1021/acscentsci.6b00389
  17. G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi, Z. Chen, A. D. Sendek, H.-W. Lee, Z. Lu, H. Schneider, M. M. Safont-Sempere, S. Chu, Z. Bao, and Y. Cui, "High-performance lithium metal negative electrode with a soft and flowable polymer coating", ACS Energy Lett., 1, 1247 (2016). https://doi.org/10.1021/acsenergylett.6b00456
  18. A. A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, "Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery", Nanoscale, 10, 6125 (2018). https://doi.org/10.1039/C7NR09058G
  19. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, "Poly(dimethylsiloxane) thin film as a stable interfacial layer for high performance lithium-metal battery anodes", Adv. Mater., 29, 1603755 (2017). https://doi.org/10.1002/adma.201603755
  20. T. Foroozan, F. A. Soto, V. Yurkiv, S. Sharifi-Asl, R. Deivanayagam, Z. Huang, R. Rojaee, F. Mashayek, P. B. Balbuena, and R. Shahbazian-Yassar, "Synergistic effect of graphene oxide for impeding the dendritic plating of Li", Adv. Funct. Mater., 28, 1705917 (2018). https://doi.org/10.1002/adfm.201705917
  21. J. Mohanta, D. K. Padhi, and S. Si, "Li ion conductivity in PEO-graphene oxide nanocomposite polymer electrolytes: A study on effect of the counter anion", J. Appl. Polym. Sci., 135, 46336 (2018). https://doi.org/10.1002/app.46336
  22. F. J. Yang, Y. F. Huang, M. Q. Zhang, and W. H. Ruan, "Significant improvement of ionic conductivity of high-graphene oxide-loading ice-templated poly (ionic liquid) nanocomposite electrolytes", Polymer, 153, 438 (2018). https://doi.org/10.1016/j.polymer.2018.08.039
  23. H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, "High-efficient synthesis of graphene oxide based on improved hummers method", Sci. Rep., 6, 36143 (2016). https://doi.org/10.1038/srep36143
  24. J. Chen, B. Yao, C. Li, and G. Shi, "An improved hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
  25. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, "Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations", Chem. Mater., 11, 771 (1999). https://doi.org/10.1021/cm981085u
  26. J. Chen, Y. Li, L. Huang, C. Li, and G. Shi, "High-yield preparation of graphene oxide from small graphite flakes via an improved hummers method with a simple purification process", Carbon, 81, 826 (2015). https://doi.org/10.1016/j.carbon.2014.10.033
  27. D. Seok, Y. Kim, and H. Sohn, "Synthesis of $Fe_3O_4$/porous carbon composite for efficient $Cu^{2+}$ ions removal", Membr. J., 29, 308 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.308
  28. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  29. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, "Dispersion behaviour of graphene oxide and reduced graphene oxide", J. Colloid Interface Sci., 430, 108 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
  30. H. Ha, J. Park, K. Ha, B. D. Freeman, and C. J. Ellison, "Synthesis and gas permeability of highly elastic poly(dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers", Polymer, 93, 53 (2016). https://doi.org/10.1016/j.polymer.2016.04.016
  31. B. Wang, B.-K. Lee, M.-J. Kwak, and D.-W. Lee, "Graphene/polydimethylsiloxane nanocomposite strain sensor", Rev. Sci. Instrum., 84, 105005 (2013). https://doi.org/10.1063/1.4826496